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I INTRODUCTION

This report describes a one-year research program to evaluate the ef-
fectiveness of automatic signature verification based on three-axis signature
dynamics.

There were two major aspects of the research effort:

e Data collection.

e Performance analysis to estimate the access time and Type I/Type Il
error curves for the signature verification system.

Over a four-month period, 5,220 signatures and 1,740 numeric sequences
were collected from 59 subjects. These data were collected both with the
subjects sitting at a table and standing at a counter. Twelve trained forgers
attempted 648 forgeries. The forgers were given copies of the true signers'
signatures, instructed in how the signature verification system works and what
it measures, allowed to watch video tapes of the true signers writing their.
signatures, and allowed to practice as much as they desired over a three-week
period. These data and the data collection protocol are described in detail
in Section II.

Signature verification algorithms and associated data base analysis tech-
niques are discussed in Section III. The primary focus is on the features and
"rubbery" correlation algorithms for signature verification, and on a dis-
criminant analysis approach to subject identification based on a handwritten
sequence of numerals. »

A detailed summary of the performance analysis results is given in
Section IV. Estimates for the average access time and Type I/Type II error
curves are presented for the features and rubbery correlation signature-
verification techniques for a variety of operating conditions. The results of
the subject identification trials based on a handwritten numeral sequence and
a discussion of the user acceptability of the system are also given in
Section 1V.

A brief summary of the major results of the study and recommendations for
future work are given in Section V.

Because of the proprietary nature of some of the software programs used
in the research, copies of these programs and associated documentation will be
delivered to RADC under separate cover. A magnetic tape containing all the
data collected in a format compatible with RADC's PDP 11/70 operating under
RSX 11-M will siidlarly be provided. Documentation for the magnetic tape,
including a test program for reading data from the tape, is given in
Appendix A of this report.
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A.

Summary of Data Collected

I1 DESCRIPTION OF THE DATA BASE AND
DATA COLLECTION PROCEDURES

The collection of true-signer data took place over a
from the beginning of June to the end of September 1980.
subjects who participated in the data base and the number of signatures for

each is given in Table 1.

of 5,220 true signatures was collected.
in the form of a magnetic tape in a format compatible with the PDP 11/70 com-

puter (see Appendix A).

NUMBER OF SIGNATURES AND NUMERAL STRINGS COLLECTED FROM

Table 1

Subjects are identified by their initials.
These data will be delivered to RADC

EACH SUBJECT IN THE TRUE-SIGNER DATA BASE

four-month period
A list of the 59

A total

Subject Number of Number of Total
Signatures Numeral Strings (Signatures + Numerals)
AAF 108 36 144
AEP 84 28 112
AEW 96 32 128
AS1 102 34 136
BEP 108 36 144
BJG 114 38 152
CAU 78 26 104
CBW 84 28 112
CEP 90 30 120
CMS 90 30 120
DEP 102 34 136
DRB 90 30 120
DWV 66 22 88
ELF 78 26 104
EMW 96 32 128
FET 96 32 128
FIM 72 24 96
FLL 102 34 136
GAN 96 32 128
GEG 96 32 128




Table 1 (Concluded)

Subject Number of Number of Total |
Signatures Numeral Strings (Signatures + Numerals) j
! GEW 90 30 120
HEP 78 26 104
HFS 84 28 112
Jcz 66 22 88
JEE 90 30 120
3 i JEM %6 32 128
g JEP 102 34 136
JJs 114 38 152
E JLP 102 34 136
. JNH 84 28 112 ‘
JRL 90 30 120 o
KCN 84 28 112
KES 108 36 144
LAL 84 28 112 ;
3 1 LEL 120 40 160 ;
: 7 MAB 96 32 128 )
{ MAN 66 22 88
MER 42 14 56
MFA 84 28 112
: MRC 108 36 144
' OEK 102 34 136
3 PER 30 10 40
1 PES 66 22 88
S PJP 120 : 40 160
s 1 PLH 78 26 104
RAB 102 34 136
| i RTK 54 18 72
: : RWH 102 [ 34 136
! : RWR 90 30 120
¥ ! SAW 108 36 144
; SbJ 84 28 112
i SEA 78 26 104
SEC 102 . 34 136
‘ SEM 54 18 72
1 é SRW 90 30 120
é % TDK 66 22 88
‘ ' TPP 60 20 80
T TSS 114 38 152
‘ ' VKR 84 28 112
Total 5,220 1,740 6,960
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The data base subjects were chosen at random from a large group of
volunteers at SRI. The only constraints imposed on subject selection were to
obtain an approximately equal number of women and men, about 10 percent left-
handers (based upon estimates of the percentage of left-handers in the general
population), and a range of heights, weights, and ages. Referring to Table 1,
the left-handers in the data base are CMS, FET, PER, PES, RWH, and SEC.

Thirty of the 59 subjects were women.

In addition to the signature data, 1,740 handwritten samples of the
numeric sequence 12345 were obtained from the 59 subjects during the same data
collection period. Although not specified in the original work statement,
SRI, at the request of RADC, agreed to collect this numeral data for the
purpose of determining how well the 59 subjects could be identified* from
handwritten samples of the same set of characters. The numberic data col-
lected are also summarized in Table 1. The total number of responses obtained
(signatures and numerals) was 6,960.

In addition to the signature and numeric data, 648 forgery attempts were
obtained from 12 trained forgers. A summary of the attempted forgery data is
given in Table 2. The forgery data will also be delivered to RADC on magnetic
tape (see Appendix A). A detailed discussion of what information was made
available to the forgers and how they were trained is given in the next
section (II-B).

The total amount of data collected, including signatures, numerals, and
attempted forgeries, is on the order of 25 million bytes (25 megabytes or 200
megabits).

Finally, as a separate item, each subject in the true-signer data base
was videotaped in the process of signing three signatures. As discussed in
II-B, these tapes were used in the forger training to provide the kind of
dynamic information that can be obtained by observing the true signer write
his signature.

*"Verification" and "identification” have different goals. In verification a
person makes a claim as to his identity and the system attempts to verify
this claim by comparing his handwritten signature against the computer-stored
reference or template of that person's known signature. In identification
the person does not make an a priori claim as to his identity; rather, the
system attempts to determine his identity by comparins his handwritten sample
against the set of templates for all persons in the data base to find the
closest match.

WP SRR SRR




Table 2

SUMMARY OF FORGERY ATTEMPTS

Forger True Signer Number of Attempts
AEP RWR 18
AEP VKR 18
BEH TPP 18
DEC ASI 18
DEC JNH 18
DEC SAW 18
DEC SbJ 18
GEM ELF 18
GEM JEE 18
JER AEW 18
JER GAN 18
JFL DRB 18
JFL MRC 18
JFL RAB 18
PED GEG 18
PEM EMW 18
PEM MAB 18
PEM MFA 18
PEM SEA 18
RWH CMS 18
RWH FET 18
RWH PES 18
RWH SEC 18
RWH JEM 18
RWH BJG 18
VEW FJM 18
VEW FLL 18
VEW JRL 18
VEW LEL 18
JSO AAF 18
JSO AEP 18
Jso CEP 18
Jso DEP 18
JSO LAL 18
TPP GEW 18
TPP OEK 18

Total 648




B. Data Collection Protocol

1. Data Collection Area

The data were collected in a partially enclosed area containing a table
and a counter (a podium-like stand). For the reasons discussed below, at each
data collection session the subject wrote signatures both while sitting down
at the table and while standing at the counter. The operator (a research
assistant) sat in front of a computer terminal immediately adjacent to the
partially enclosed area. Although the area was partially enclosed, the sub-
jects were not totally isolated from view nor acoustically shielded from the
normal computer noise. In essence, the data collection environment was es-
sentially what might be expected for a personal identification system used for
access control to a computer area.

2. True-Signer Data Base

Upon entering the data collection area, the subject was given a standard
form on which to write his signatures and numerals for the session. This form,
shown in Figure 1, was filled out ahead of time with the subject's name, the
date, and other pertinent information so that the subject was free to concen-
trate on signing his signature and writing the sequences of numerals. The
operator told the subject whether the data collection session was to begin at
the table or the counter. To avoid biases, the order of collection alternated;
that is, at one session the standing signatures would be collected first and
the next time the sitting signatures would be first. If the table was first,
the subject wrote three signatures and one set of numerals (12345) sitting at
the table, and then wrote three more signatures and another numeric sequence
while standing at the counter. When the counter was first, the process was
reversed. Thus a data collection session consisted of six signatures and two
numeric sequences. Three signatures under both sitting and standing condi-
tions were required for each data collection session, because in the perfor-
mance andlysis we planned to simulate a personal identification system that
allowed up to three tries at verification.

During the first session, the subject was given brief instructions. He
was told that the system measures forces and dynamics so that any unusual
pauses in writing are likely to cause the signatures to be rejected. The
subject was instructed to use his or her standard signature. A subject who
typically used one or more signature variants (e.g., a full middle name one
time and only an initial the next) was requested to use the most common version
of the signature. The subject was instructed to inform the research assistant
of any obvious mistakes such as leaving out a middle name or initial, or other
gross signature variants. There were very few such mistakes and those that
occurred were excluded from the data base.

The signature and numeral data for each session were collected in a real-
time on-line basis. That is, whenever a subject wrote a signature it was
automatically digitized by the PDP 11/40 computer and written out on a large
disk (67 megabytes), including-a header record consisting of the subject's
initials, the date and time, a response or index number, and varicus other

9
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pertinent information. All data forms for all subjects and for all data col-
lection sessions, as well as hard-copy records of all program transactions,
were saved. In all, sufficient records were maintained so that whenever ques-
tions arose about the data it was possible to reconstruct exactly what happened
during the session in question.

For a signature verification system operating in the "real world," the
users must cooperate with the system or risk being denied access to a secure
area, computer account, or the like. However, no such motivation exists for
a data collection effort of the type described here. Thus there is always the
danger that subjects will grow careless after the initial novelty of the sys-
tem wears off, which can lead to unnaturally large variations in the way
signatures are written and cause an artificially low estimate of system
performance (compared to a real-world system in which users are continually
motivated by the need for access). Hence to better simulate real-world oper-
ating conditions we offered prizes for the signatures that were most consistent
over the data collection period. The intent here was to provide at least some
motivation for the subjects to perform as they would in a real-world
environment.

3. Forger Data Base

essentially the same as that for the true-signer data base described in the
preceding subsection. This is to be expected, because in the real world there
is no a priori knowledge as to who is the true signer and who is the forger,
so both must be treated the same (up to the point of verification). For con-
sistency, prizes ($100, $50, and $25) were also offered for the "best"
forgeries to provide motivation for the forgers to practice and do the best
job possible.

{ k The basic procedure for collecting and storing attempted forgery data was

Since the forgery data collection procedure was essentially the same as
that for the true-signer data base described above, it remains only to discuss
the training and preparation of the forgers.

One of the first problems was the selection of forgers. This was dif-
ficult because the SRI signature verification system is based on the dynamics
of a signature (i.e., the forces and motions used to create a signature) rather
than its final static image.* Thus the requirements for being a successful
forger in the SRI system are quite different than those for a "classical"
forgery, whose purpose is to duplicate the static image of a signature. For
example, in our system tracing a true signature would be one of the worst
strategies for forgery, because tracing usually results in dynamics very dif-
ferent from those of the true signer even though the final result may be
essentially identical. Our approach was, therefore, to select motivated
people who had good manual dexterity and the capability of understanding the
basic concepts behind the verification system.

*
See Appendices B and C for further details.

11
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Rather than requiring the forgers to make a few attempts at all the dif-
ferent signatures in the true-signer data base, we decided that a more
realistic simulation of how a real forger would operate would be to have each
of our forgers concentrate on three or four signatures. They were given
several samples of these signatures and were also given a description of how
the signature verification system operates: that it measures signature
dynamics, that timing and forces are generally important, and that some of
the typical features on which the verification is based are the total time of
the signature, average force in the three orthogonal directions and the respec-
tive energies, the number of pen~ups and pen-downs, and so on. Each forger
was allowed 18 attempts to forge a particular signature. After the first nine
attempts he was shown a video tape with a close-up view of the subject signing
his signature. This was intended to. simulate the condition in which a real
forger surreptitiously observes a person writing his signature to learn as
much as possible about the dynamics of the signature. Before the actual
forgery attempts, the forgers were allowed to practice as much as they wanted
within a three~week period. In essence, the forgers were provided with all
the information that a dedicated real-world forger could be expected to obtain.

C. Assessment of Data Quality

When a signature, set of numerals, or any other response is written using
the SRI pen, the result is a set of three analog signals that are a time
record of the instantaneous three-axis force* on the pen tip during writing.
An example is shown in Figure 2. The question of data quality then has two
aspects:

e How well the three analog time series signals represent the important
characteristics of a handwritten signature.

e How accurate the digitized (discrete) representation is of the three
analog time series signals that are generated using the analog-to-
digital converter and PDP 11/40 computer.

A discussion of the SRI pen as a device for transducing the motions used
in handwriting into analog electrical signals representing the motions has
already been published and hence will not be duplicated here. See Appendix B
for details.

The data base was recorded and stored in digital (discrete) form. This
approach was taken because it was more compatible with the subsequent process-
ing and analysis, and because discrete data can be transported relatively
simply between computers (e.g., in transferring the data base from SRI's PDP
11/40 to RADC's PDP 11/70). However, since we stored only the discrete
repregsentations of the P,X,Y analog signals, it was important to ensure

I.e., force on the pen tip in three orthogonal directions. When the pen tip
is vertical, the P-~signal represents the downward force or pressure, and the
X and Y force signals represent the left/right and far/near forces, respec-
tively, in the plane of the writing surface.

12
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‘ pen signals rolls off sharply above 25 Hz, because of filtering in the elec-

Newt 9 (—

{a) ORIGINAL SIGNATURE
Y SIGNAL
X SIGNAL

P SIGNAL

z | s | 4J | L 1 1
1 2 3 4

TIME ~— seconds

{b) THE THREE-DIMENSIONAL SIGNALS GENERATED BY THE SRI PEN
DURING THE WRITING OF THE ABOVE SIGNATURE

FIGURE 2 P, X, AND Y FORCE SIGNALS FOR A TYPICAL SIGNATURE

the accuracy of the discrete representations. The frequency response of the

tronics, and it is reasonable to approximate the pen response as being
frequency-bandlimited with a maximum frequency of about 25 Hz. The sampling
theorem of communication theory states that for a bandlimited signal, sampling
at least twice during the period of its highest frequency component is suf-~
ficient to completely characterize the signal in the sense that the original
analog signal can be exactly reconstructed from the discrete samples. The
minimum sampling rate for which this is possible is called the Nyquist rate,
which corresponds to sampling exactly twice during each period of the highest
frequency component. For the pen system the Nyquist rate = 1/2(25 Hz) = 0.02 s
or 50 samples/s for each of the three analog signals. However, for safety we
sampled at twice this rate, or 100 samples/s for each signal, for a total of

{ ‘ 300 samples/s. This ensures that no loss of information occurs in the process
| ’ of digitization and storage of the data in digital form.

13
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During the data collection period, quality checks on the data were made
at regular intervals. These checks consisted of printing out the data for
selected signatures and displaying the P,X,Y signals in graphic form on a
Tektronix display scope. As discussed earlier, a hard-copy record of all the
data collection sessions was also maintained.

During the data collection period, only one software problem occurred.
Under very unusual circumstances a very narrow spike was artificially intro-
duced into the data. This problem, which was traced to a software error in
the data collection program, was corrected at an early stage and affected only
a very small amount of data. A computer program was written to search through
all the data records to identify which were affected by this error. These
responses were excluded from the analysis. There were occasions, also very
infrequent, when the pen ran out of ink and had to be refilled, and on some
such occasions a bad signature resulted. The number of bad responses from
all sources is summarized in Table 3 for signatures and numerals.

The forgery data base collection began well after the true-signer data
base, by which time these problems had been resolved, and hence all the
forgery data was of good quality.

To summarize, of the total of 7,608 true signatures, numerals, and
attempted forgeries, 47, or 0.6 percent, were deleted. The rest of the data
was of high quality and was used in the subsequent analysis.

Table 3

BAD SIGNATURE AND NUMERIC RESPONSES

Response Numbers

Subject Bad Signatures Bad Numerals

AAF
AEP
AEW
AS1 8, 11
BEP

BJG 4
CAU 34
CBW
CEP Kk)

CMS 28, 60, 89

DE?
DRB 40
m .
ELP 70, 76
MW 3

14
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Table 3 (Continued)

Response Numbers

Subject Bad Signatures Bad Numerals
FET 8
FIM 49
FLL 5
GAN
GEG
GEW 55
HEP 76
HFS
Jcz
JEE
JEM 1
JEP 32, 36
JJS 11
MLP
JNH 6 8
JRL
KCN 12
KES
LAL
LEL 19, 29 3
MAB
MAN 16, 26
MER 5
MFA 62
MRC 23 1
OEK 1
PER 3
PES
PJP 7, 26, 27, 39, 40
PLH 2
RAB 44
RTK
RWH
RWR
SAW
sJ 9
SEA 46
SEC
SEM
SRW 2,5
15
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Table 3 (Concluded)

Subject

Response Numbers

Bad Signatures Bad Numerals
TDK
TPP
TSS
VKR 12

16
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III DATA BASE ANALYSIS PROCEDURES

The purpose of the data base analysis is twofold:

e To optimize the performance of the signature verification system.
e To provide estimates of the performance of the optimized systems,
including Type 1/Type II error curves* and access time.

In this section we summarize the basic analysis procedures applied to the data
base described in Section II. The results of the performance evaluation are
reported in the next section (Section IV).

A. Features Analysis (for Signature and Forgery Data)

In this subsection we discuss the analysis procedures applicable to the
features approach to signature verification. For background we begin with a
description of how that approach actually works.

1. Features Approach to Signature Verification

The features approach to signature verification is summarized in Fig-
ure 3. When a person's identity is to be verified (e.g., to gain access to
a secure area) the procedure is to identify himself to the system and write
his signature. As shown in the figure, the pen transduces the forces and
motions used in writing the signature into a set of three analog signals that
are a time record of the instantaneous force on the tip of the pen in the
three orthogonal directions. The P-signal is the downward force or pressure,
and the X and Y signals are the left/right and far/near forces, respectively,
in the plane of the paper. These analog signals are input to an analog-to-
digital converter and digitized at the rate of 100 samples per second per
channel. The digitized representations of the P,X,Y analog signals are then
processed by a computer to extract a set of descriptors, called features, of
the three signals. These features include various timing parameters suck as
the total time of the signature, the average force in each of the three
directions (P, X, and Y) and the corresponding energies, the number of pen-
ups and pen-downs, and so on. A complete listing of the features considered
is given in III-A-2. The set of features (s;, s2, ... s,) extracted from the
discrete representations of the P, X, and Y signals form the feature vector
when arranged in column order, as shown in Figure 3. The computer then calls
up the computer-stored template or reference feature vector corresponding to
the person whom the writer claims to be. The template vector is an average

*A Type I error occurs when a true signature is classified as a forgery (a
false rejection). A Type II error occurs when a forgery is classified as a
true signature (impostor accepted).

17
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: THE SRI PEN CONVERTS
o WRITING MOTIONS INTO
Y

ANALOG ELECTRICAL SIGNALS

TIME

FEATURE EXTRACTION

COMPUTER-STORED TEMPLATE CONSISTING
OF A TEMPLATE VECTOR AND AN

ASSOCIATED STANDARD DEVIATION VECTOR

AP g
{ O DIGITIZATION AND
O

s t| 01
s. t [/
. 2 FEATURE VECTOR 2 2
$=| REPRESENTING THE - ¢ o~ ¢
H SIGNATURE . :
n th On
. < Aot
- < <
METRIC MEASURE OF CLOSENESS
‘ BETWEEN THE FEATURE VECTOR
: AND THE TEMPLATE VECTOR
'
| e"'o‘%
%&
’ ATTEMPTED FORGERY TRUE SIGNATURE

{ ‘ FIGURE 3 OVERALL VIEW OF THE FEATURES APPROACH TO SIGNATURE VERIFICATION

18




B R T L T e,

feature vector constructed from a set of known true signatures. Associated
with the template vector is a vector of standard deviations for the features
(see Figure 3), which provides a measure of how variable the true signer is
from signature to signature for each feature. A measure of closeness between
the feature vector and the template vector is then computed. If the feature
vector corresponding to the signature in question is '"close enough' to the
template vector, the signature is judged to be a true signature and the per-
son's identity is verified. If the feature vector is not close enough, the
signature in question is judged an attempted forgery. In a practical signa-
ture verification system, the writer will often be allowed more than one
chance to be verified; that is, if the first signature does not pass the above
tests, he or she will be allowed to write one or two more signatures to be
tested for verification.

A quantitative description of the computed "measure of closeness' between
the feature vector and the template vector is given in Appendix C. In essence,
the measure of closeness is a Euclidean distance metric, normalized or
weighted by the template standard deviation vector. When the calculated dis-
tance metric is less than or equal to a pre-specified threshold, the signature
is judged to be true; if above the threshold, it is judged to be an attempted
forgery.

In the features technique, as we have seen, the forces and motions in-
volved in creating a signature are finally represented as a feature vector.
Clearly, if the features approach to signature verification is to be success-
ful, the feature vector must contain as much information as possible that is
ugseful for discriminating between true signatures and forgeries. The basic
purpose for collecting a data base of true signatures and attempted forgeries
is to provide data that can be analyzed to selec: a set of features (which
constitute the feature vector) that provide maximum discriminating power
between the true signatures and the attempted forgeries. The process of
optimizing the features technique, then, consists of selecting the "best" set
of features and an appropriate threshold for the distance metric measure of
closeness (see Appendix C for details).

The problem of selecting a "best' set of features has two aspects, which
we call feature extraction and feature selection. In general, there is no way
to make an a priori determination of what the best features will be for a
particular situation, so what must be done is to extract a relatively large
number of features that are expected to be useful for discriminating between
true signatures and attempted forgeries. This generally results in a great
deal of redundancy. The objective of feature selection is to obtain a
reduced set of features that contsins essentislly all the discriminating
power of the original features set.* The festures initially extracted for

*Under certain assumptions concerning the probability distributions of the
feature set, it can be shown that the process of feature selection cannot
reduce the Type I/Type II error rates. However, as a practical matter, an
improvement in error-rate performance often results from feature selection.

See R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis
(New York: Wiley, 1973), p. 66.
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the signature verification problem are described in I1I-A-2, The feature
selection process is discussed further in III-A-3,

2. Feature Extraction

Based on our knowledge of the characteristics of the P, X, and Y signals
derived from the pen and our experience with previous true-signature and
forgery data bases, a set of 44 features was selected as the starting point
in the current data base analysis. These features are described in Figure 4.

FEATURE
NUMBER FEATURE
X Y p )
1 " 21 SCALED MEAN
2 12 | 22] STANDARD DEVIATION
3 131 &8 MAXIMUM
4 14| 24 MAXIMUM
5 16| 25 AVERAGE ABSOLUTE
6 16| 26 AVERAGE POSITIVE
7 171 27 NUMBER OF
POSITIVE SAMPLES
8 18 | 28 AVERAGE NEGATIVE
9 19| 29 NUMBER OF
. NEGATIVE SAMPLES
10| 20 30 NUMBER OF
O-CROSSINGS
31 32 | 33 MAXIMUM MINUS
SCALED MEAN
34 | 35 3 MAXIMUM
MINUS MINIMUM
371 38| 39 SCALED MEAN
MINUS MINIMUM
FEATURE
NUMBER FEATURE
40 TOTAL TIME
4 NUMBER OF
SEGMENTS -1
42 TIME UP
43 NUMBER OF SEGMENTS
44 TIME DOWN

FIGURE 4 THE 44 ORIGINAL FEATURES
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3. Feature Selection

The objective of feature selection is the following: Given the rela-
tively large set of 44 features described in the preceding subsection, find a
subset that yields the best performance for signature verification. The pro-
cess of feature selection yields two positive benefits:

e It reduces the Type I/Type II error rate.

e It improves computational efficiency by excluding or combining fea-
tures that contain redundant information about the signature.

Before presenting the results of our analysis, we will give a brief descrip-
tion of general feature selection concepts.

In general, all feature selection techniques follow the same procedure.
The starting point is a large set of features that the analyst believes to be
useful for discriminating between samples (in our case, between true signa-
tures and attempted forgeries). The discriminating power of each of the fea-
tures, or subsets of features, is determined by performing statistical tests
on a training set of data that is believed to adequately represent the popu-
lation of interest. The subset of features that yields the best performance
(by some criteria) and that contains the minimum number of features is the
"best" feature set. Many procedures and algorithms for performing computer-
ized feature selection have been devised. Some of these are based on uni-
variate F-ratio evaluations,* Fisher's discriminate analysis,? information
measures such as divergence,T and a host of ad hoc procedures. For the cur-
rent project we tried a number of these techniques. Although some of them
performed reasonably well, we were not entirely satisfied with the results.
The standard feature selection techniques are all based on a number of
assumptions about the underlying probability structure of the feature set.
The exact assumptions differ somewhat from technique to technique, but in
general it is assumed that the set of features is distributed as a multivari-
ate Gaussian density, that the covariance matrices (see Appendix C for a
definition of the covariance matrix) are equal, and the like. Our signature
verification features do not appear to satisfy these conditions, and the re-
sult is that the feature selection techniques mentioned above do not operate
in an optimum fashion; that is, there is no guarantee that the feature set
obtained is the one that minimizes the Type I/Type II error rate. Because of
the somewhat unsatisfactory performance of these classical feature selection

*The F-ratio technique for feature selection is described in many textbooks.
For example, see W. J. Dixon and F. J. Massey, Introduction to Statistical
Analysis, 3rd ed. (New York: McGraw-Hill, 1969), ch. 10; G. W. Snedecor and
W. G. Cochran, Statistical Methods, 6th ed. (Iowa State University Press,
1967), ch. 14; and D. E. Bailey, Probability and Statistics (New York:
Wiley, 1971), ch. 17 to 19.

tR. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis (New
York: Wiley, 1943).

*s. Kullback, Information Theory and Stecistics (New York: Wiley, 1959).
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techniques, a new approach was devised that uses as its basic criterion the
direct minimization of the Type I/Type II error rate.*® This effort, which
resulted in a much improved feature selection, can be summarized as follows:
We began by extracting a subset of the total data base of signatures. Because
we had an equal number of standing and sitting signatures, we typically used
the standing signatures to select features (training the system) and the
sitting signatures on which to make a final estimate of the error performance.
To cross-validate the results the procedure was reversed, so that the sitting
data were used as the training set and the standing data as the testing set.
This process of using different sets of data to train and test the system
provides a more realistic (conservative) estimate of the true error rates.
(Using the same data for training and testing would yield unjustifiably opti-
mistic results.) Starting with the full set of 44 features and (for example)
the standing signature data as the training set, we first calculated the

Type I/Type II error-rate curves? for all subsets of 43 features. We then
examined the results to determine which of the 43-feature subsets yielded the
best Type I/Type Il error performance. Next we calculated the Type 1/Type II
error curves for all 42-feature subsets of the best 43-feature set, then for
all 4l1-feature subsets of the best set of 42 features, and so on.¥ What typ-
ically occurs in this process is illustrated in Figure 5. As useless and/or
redundant features are removed, the error rate decreases until it reaches a

. minimum. Once this minimum is reached, excluding more features results in
reduced performance. The feature set that yields the minimum is selected as
“ g the best set.

The above procedure is an approximation to the more complete process of
calculating the Type I/Type II error rates for all possible subsets of the 44
features, which is computationally prohibitive.§ Compared to the classical
1 techniques for feature selection, this method has the following advantages:

e It requires no assumptions about the underlying probability distri-
bution of the feature set.

e The calculations involved are relatively simple and intuitively
reasonable.

e It selects a "best" feature set by choosing the subset that yields
the least probability of error (subject to the qualification mentioned
above that not all possible combinations of feature subsets are tested

*Generally, the classical feature selection techniques cannot be related
directly to Type I/Type II error rates except, as noted earlier, under a set
of restrictive assumptions about the probability structure of the feature
set (which are not satisfied by the signature verification features).

TThe procedure for calculating these curves is described in IV-A.

#This leave-one-out strategy can be rather time~consuming in itself. We
were able to make the process more efficient by excluding more than one
i feature per iteration.

§A set of only 20 features would require more than one million Type 1/Type II
calculations.
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EQUAL
ERROR
RATE
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44 | 1
MINIMUM
ERROR
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*AT INTERSECTION OF THE TYPE {/TYPE Il CURVES

FIGURE 5 TYPE I/TYPE |l EQUAL-ERROR RATE® VERSUS NUMBER OF FEATURES

by our restricted search algorithm). This is not true of classical
feature selection procedures in general, whose results can be said to
minimize the probability of error only under a very restrictive set

of assumptions, which experience has shown is not valid for the signa-
ture verification features.

e It takes into account correlations between features (implicitly).
Redundant features (i.e., two features that are highly correlated)
are excluded by the process of choosing the minimum point on the curve
in Figure 5.

4. Type 1/Type II Error-Curve Calculation Procedures

To calculate the Type I/Type Il error curves, we developed an analysis
procedure that simulates how a real-world signature verification system might
operate. This program includes an enrollment phase in which templates are
constructed from the first few (typically 10 or 12) signatures for each sub-
ject, and a verification phase in which subsequent true signatures and
attempted forgeries are compared against the appropriate templates to deter-
mine the percentage of false rejections of true signers and of imposter
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acceptances. The system allows up to three tries (signatures to be compared
against the template) per verification trial. If the first signature fails to
pass the verification criteria, a second signature is tested. If the second
also fails, a third signature is considered. If all three signatures for a

particular verification trial fail to pass the verification criteria, the sub-
ject is rejected as an impostor.

. A template updating procedure was used to continually modify templates
based on successful verification attempts. Each time a verification trial was
successful on the first try (i.e., the first signature satisfied the verifica-
tion criteria), the feature vector for that signature was added to the tem-
plate vector with a weighting of 1/8. Thus if a subject's signature varied
over time, the template would track the change. This template updating pro-
cedure was found to improve verification performance by reducing the percent-
age of true-signer rejections.

The basic criteria used to judge whether a particular test signature was

a true signature or an attempted forgery was as follows: As in Figure 3, let

S be the feature vector representing the test signature. The components of g
are the values of the set of "best" features determined by the method de-
scribed in the precedlng subsection. Let t be the computer-stored template
or reference yector_and O the associated standard deviation vector. The deter-
minations of t and o are based on an enrollment set of*known*true signatures
(see Appendix C for explicit formulae for calculating t and o). Referring to
Figure 3, the measure of closeness between the test signature and the template

{ is the weighted Euclidean distance metric

where f is the number of features, sj is the value of the ith component or
feature in the feature vector s, ti is the ith component of the template
vector, and o4 is the standard deviation of the ith feature as computed from
a set of enrollment signatures. (See Appendix C for the reasons for selecting
this Euclidean distance metric as the measure of closeness between the test
signature and the template.)

The quantity d(s t) is a measure of closeness between the vectors s and
. t. The §maller the calculated value of d(s t), the greater the s1milarity
\ between s and t, and therefore between the test signature represented by 2 and
: the computer-stored template t for the subject whose identity is being claimed
by the person desiring to be verified.

The decision rule for deciding whether a particular test signature satis-
. fies the verification criteria is:

! o If d(g,?) < dthres, the signature is judged to be a true signature.

| o If d(g,?) > dthres’ the signature is judged to be an attempted forgery.

!
| ¢
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The quantity dtNT€8 jg a pre-assigned threshold value selected by using the
Type I/Type 11 error curves to obtain the optimum trade-off between Type I and
Type 1I errors for the particu%ar application of interest. For example, for
high-security applications, 4thres yould likely be set to a relatively small
value to minimize the impostor acceptance rate, while for banking applications
in which the concern is usually to minimize user inconvenience (i.e., minimize
the Type 1 error rate) a larger value for dthres might be more suitable.

The procedure by which the Type I/Type II error curves were estimated
from the data base is as follows: Let T! represent the total number of veri-
fication trials in the true-signer data base, and let R! represent the number
of trials for which a true signer was falsely rejected. Note that the number
of false rejections Rt is a function of the decision threshold while Tt is not.
In general, Rt decreases as dNT®S jincreases and increases as dtNTeS decreases.
Recall that each verification trial allows up to three attempts, so that a
false rejection occurs only when all three signatures fail to satisfy the
verification criteria. The Type I error (false rejection rate for true
signers) is estimated as

t
Type I error = EI =

Hnlw

The ~ symbol is used to indicate that ﬁI is an estimate of the error rate.
When E1 is plotted as a function of the decision threshold, dthres, the Type I
error curve results. Similarly, the Type Il error is estimated to be

. " Rf
Type II error = E.. = —¢
11 Tf

where Tf is the total number of forger trials and Rf is the number of trials
for which a forged signature passes the verification criteria (i.e., the num-
ber of imposter acceptances). Rf is also a function of the decision thresh-
old; it increases with increasing dtNTeS and decreases with decreasing dthres
A plot of Eyp versus dthres yie1ds the Type II error curve. The justification
for using the particular form of error-rate estimation given above is dis-
cussed in Appendix D. Ej and Ejj are the maximum likelihood estimates (assum-
ing independent trials) of the error rate for binomial distributed random
variables.

Ey and Eyy are estimates of the Type I and Type II errors, respectively,
based on our data base of true signatures and attempted forgeries. The ques-
tion then arises as to how confident we are that these estimates really cor-
respond to the actual population error rates. In other words, our data base
is only a sample drawn from a larger population of true signers and forgers,
and we must ask how well we can estimate the true error rates for the larger
population based on our particular sample. This leads to the concept of con-
fidence limits, which 1is discussed in Appendix E. Basically if we say that
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we have 95 percent confidence limits of $1 percent for the Type I error rate,
this means that we are 95 percent certain, given the estimated Type I error
rate Ey, that the true population error rate is within the range E; %1 percent.
For example, if Ey = 2 percent then the true population error rate would be in
the range 1 to 3 percent, with 95 percent confidence.

5. Individualized Feature Selection

In the preceding subsection we have discussed procedures for feature
selection. These procedures can be used to determine a standard set of "best’
features to be used for all subjects or to derive a set of best features for
each subject individually. It is well known, both theoretically and from
practical experience, that the use of individualized feature sets generally
yields better signature verification performance* (lower Type I/Type II error
rates), provided that enough training data is available to estimate the sets
with reasonable statistical confidence. However, the use of individualized
feature sets requires a more complex enrollment procedure, and it is not clear
a priori that the improved performance is sufficient to justify its use for
some practical applications of signature verification. 1In essence, the prob-
lem with individualized feature selection is that a large number of enrollment
signatures is required from each subject to determine individualized feature
sets with reasonable statistical confidence. If a standard feature set is
used (i.e., if the same feature set is applied to all subjects) on the order
of 10 to 12 signatures are adequate for enrolling a subject. This seems very
practical and reasonable for a real-world signature verification system.
Typically, to enroll in such a system a subject will sign five or six signa-
tures on two different days. The requirements are quite different for indi-
vidualized feature selection. Although the exact number of signatures needed
cannot be determined without knowing the exact probability structure of the
signature verification features (although they are definitely non-Gaussian),

a standard rule of thumb in such instances 1s that the number of independent
training (enrollment) samples be several times the number of features. Since
we begin with 44 features, this implies that the number of enrollment signa-
tures should be quite large, probably greater than 100, although it might be
possible, with less confidence, to make do with 40 or so (perhaps even less if
the set of features from which to choose is smaller). In any case, for a
real-world application, this means that individualized feature selection may
require a relatively long enrollment procedure. However, a compromise is also
possible in which subject enrollment is based on a standard feature set, and,
as more signatures are collected through subsequent verifications, the feature
set is gradually and automatically individualized. But this approach has its
own disadvantage, that of requiring the system to store, at least temporarily,

*This 1s intuitively reasonable. Since all subjects write differently, we
would expect their signatures to be best characterized by somewhat different
feature gets. For example, the total time that it takes to write the signa-
ture is a good feature for subjects who are consistent in the timing of
their signatures but a bad feature for those who are very inconsistent in
total writing time. '
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the large number of feature vectors needed for the process of individualized
feature selection.

For the current project it was necessary to decide whether to focus the
data base analysis on the features technique using a standard feature set or
individualized feature sets for all subjects. Because of the magnitude of the
data processing task (i.e., feature extraction, feature selection, and Type I/
Type II error-curve calculations for many thousands of signatures) it was not
possible to perform a complete and exhaustive analysis of both cases. For
reasons discussed below, we decided to emphasize the standard set of features
approach and process only a few problem subjects (i.e., the subjects with an
abnormally high error rate) using individualized feature selection.

The data base collected for the project is, to the best of our knowledge,
the first large-scale data base obtained using a three-axis signature verifi-
cation system. Hence we decided it was most important to determine how well
the basic signature verification system performed when using a standard set
of features for all subjects. This approach also has the advantage that we
can identify the small percentage of problem subjects from the standard fea-
ture set analysis and then apply the individualized feature selection process
to determine what kind of improvement could be obtained for these problem sub-
jects (discussed in IV-A-3). If we had started with the individualized fea-
ture set approach, there would have been no way to work backward to determine
how well the system performed with a standard set of features,

B. Correlation Analysis

The features technique for signature verification has the advantage of
simplicity and relatively low computational and template storage requirements.
However, previous pilot studies indicate that the use of more sophisticated
template-matching (i.e., verification) algorithms can result in substantially
reduced Type I/Type 1l error rates. For high-security applications the poten~
tially improved performance of a more sophisticated verification algorithm may
outweigh the added complexity and computational requirements. In the follow-
ing we describe SRI's "rubbery" correlation algorithm for signature verifi-
cation.

In this algorithm, the P, X, and Y time-series force signals of a test
signature are correlated mathematically with the appropriate P, X, and Y
template signals. If the correlation is greater than or equal to a preas-
signed threshold (i.e., correlation value), the test signature is judged a
true signature; if not, it is judged a forgery. However, a direct mathemati-
cal correlation generally yields rather poor performance (specifically, a high
Type I error or true-signer rejection rate) because of the normal everyday
variations in a person's signature. Even though the P, X, and Y signals for
two signatures may seem highly correlated by a subjective visual comparison,
there are often small time shifts within 2 particular test signature that
cause significant misalignment between the prominent peaks and landmarks of
the test signature P, X, and Y signals and the corresponding template signals.
To compensate for the normal vdariations in a sequence of true signatures, we
developed the technique of "rubbery" correlation, in which an automatic
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two-dimensional search is used to find an optimal match (within appropriate
search 1limits) between the test signature and the template, using various
combinations of time-base translation and time-base warping (stretch and con-
traction) of the test signature P, X, and Y signals with respect to the tem-
plate signals. These procedures can be applied independently to different
parts of the signature-~-for instance, we can partition the test signature P,
X, and Y signals into halves and correlate each half with the appropriate
template P, X, and Y signals. It is also possible to use prominent landmarks
(which are usually taken to be the pen-up intervals where the P signal, or
downward pressure, is zero or close to zero) to partition a signature into
smaller pieces on which to apply the time-~warping algorithms.

The basic concept of rubbery correlation can be illustrated reasonably
simply in one dimension (instead of three dimensions as is really the case
when using the SRI pen): Let the template signal be represented as the vector

(t) whose components are the discrete sampled values of one of the analog
signals obtained from a reference signature or template.

>+
T (t) = [Tl, Tys Tgs wvees Tn]

where t indicates the vector transpose and n is the total number of discrete
samples. T is the value of the template signal at time 1, Ty is the value
at time 2, and so on.

Let the test signal V(t) (obtained from a signature that is to be veri-
fied) be represented as

->
vi(e) = [V), Voo Vas vueny V]

The standard Pearson correlation coefficient is defined as*

N 2;1*1vi - E’ri Zvi
=6 -] 2o - @)

CIT(r), V(1)) =

The expression for correlation presented above is convenient for the purposes
of explanation because its calculated values must lie between +1 and -1, where
+1 and -1 are the maximum positive and negative ccrrelations and 0 is no cor-
relation. In practice there are more efficient ways to compute correlation

if the -1 to +l1 normalization is not required.

*T. W. Anderson, An Introduction to Multivariate Statistical Analysis (New
York: Wiley, 1958), p. 49.
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When V(t) is correlated against ¥(t), we judge 3(:) to represent a true
signature if the calculated correlation is larger than a preselected positive
number, typically in the range 0.7 to 1.0. However, because true signers have
some variability in their signatures, the correlation calculations must be
made more flexible to allow a reasonable range of phase, amplitude, and time
variations. This can be done by computing the correlation function

ClT(t), V(kt + to)]

for an allowed range of translation (i.e., for various tg in the above equa-
tion) and stretching or shrinking (i.e., for various values of the multiplica-
tive constant k). The highest correlation over a specified range of discrete
values of k and tg is thus obtained. If this correlation is larger than a
specified value, the test signature is judged to be a true signature. Further
flexibility is obtained by breaking the signature into pieces, either in fixed
proportions such as halves or by using signal landmarks such as pen-ups, cor-
relating each piece allowing for the k and t( variations described above, and
combining them into a total correlation coefficient.

The procedure for calculating the Type I/Type I1I error curves for the
rubbery correlation signature verification algorithm is essentially the same
as described in III-A~4 for the features technique. The only difference is
that the measure of closeness between a test signature and the template is now
the rubbery correlation rather than the Euclidean distance metric.

C. Features Analysis (for Numeric Sequence Data)

The objective of collecting and analyzing handwritten numeric sequences
was to determine how well subjects could be discriminated on the basis of
handwritten samples of the same set of characters. As mentioned earlier,
this is an identification problem rather than a verification problem because
it is assumed that the subject makes no a priori claim as to his identity.

In verification, the subject makes an a priori identity claim and the test
sample is compared only against the computer-stored template (or reference)
corresponding to the claimed identity. In identification, the subject writes
a test sample that is compared against the templates of all the subjects to
establish his identity.

Our analysis of the numeric sequences is based on the 44 features de-
scribed in III-A-1. The set of 44 features was extracted from each of the
1,740 numeric sequences in the data base (see II-A for a description of that
data base) using our PDP 11/40 and written to magnetic tape. A computer pro-
gram was written to translate this tape into a format compatible with SRI's
CDC 6400 computer. The feature data was then analyzed using the Statistical
Package for the Social Sciences (SPSS) supported by the CDC 6400.

‘ The SPSS was used because it is ideal for the kind of identification or
g : classification problem posed by the numeric sequences. The specific program
i ! used for the current analysis, known as DISCRIMINANT, is based on standard
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discriminant analysis procedures for classifying unknown test samples into

one of many groups. Since this program is very well documented* and is avail-
able on most large-scale computers, we will not discuss it in detail here.

The results of the identification analysis are given in IV-C.

e

*N. H. Nie et al., SPSS, 2nd ed. (New York: McGraw-Hill, 1975).
| M. J. Norusis, '"SPSS Statistical Algorithms (Release 8.0)," Computer Soft-

ware for Data Analysis, Suite 3300, 444 N. Michigan Ave., Chicago, Illinois
60611.
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IV PERFORMANCE EVALUATION

In Section 1II we described the signature verification algorithms and
data base analysis procedures. In IV-A we summarize the results of the data
base analysis, in terms of the Type I/Type II error curves and average
access (or verification) time, for the features techniques using a standard
feature set that is the same for all subjects. For typical conditions the
equal-error rate® is on the order of onme percent. In IV-A-3 and IV-B we show
the improvement in performance that may be obtainable by using individualized
feature selection and the rubbery correlation algorithm, respectively. In
IV-C we present the results of a subject identification study based on a
sequence of handwritten numerals, and in IV-D we discuss the human engineering
aspects of the process (i.e., how the subjects felt about using the system).

A. Features Technique for Signature Verification

The procedure for selecting features and estimating the Type I/Type 11
error curves was discussed in III-A-3 and III-A-4, respectively. The set of
44 features (descriptors of the P,X,Y force signals generated by the SRI pen
during the writing of a signature) used in the analysis was also described in
III-A-3. In this subsection (IV-A-1l) we begin by deriving the average time
required for verification (i{.e., the average access time). In IV-A-2 we
present Type 1/Type Il error curves based upon a standard set® of "best"
features derived from the original set of 44 features.

1. Access Time

The average signature length of the 58% data base subjects is 5.7 seconds.
Added to this is a 1.5 second delay that is used to determine when the signa-
ture has been completed (i.e., no writing for 1.5 seconds indicates the signa-
ture 1s over) and a processing time of 0.5 seconds. The processing time
varies with the length of the signature, and we have taken a worst-case esti-
mate. The signature verification system allows up to three tries (signatures)

*

As discussed later in more detail, the equal-e.ror rate is the error rate at
vhich the Type I/Type II error curves intersect (i.e., where Type I error =
Type II error).

*By a standard set of features we mean a single set of features that is used
“for all subjects.

*Subject PER was excluded from the data base analysis because other commit-
ments prevented him from participating for the full length of the data col-
lection period, and too few signatures of his were available to be analyzed.
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per verification trial, but the analysis shows that on the average only 1.1
attempts were required. The average access time is thus estimated to be

Average access time = (5.7 + 1.5 + 0.5) ~ 1.1

=~ 8.5 seconds

2. Type 1/Type II Error Curves

In this section we present Type 1/Type II error curves beginning with the
so-called "Trues vs. Trues" error curves. These curves are calculated based
on the following: The known true signatures of a particular subject, say
subject ABC, are compared against his own template. The percent rejection as
a function of the decision threshold is the Type I error curve.* The Type 11
error is calculated by comparing the true signatures of all the other subjects
against the ABC template. The percent accepted as a function of decision
threshold is the Type 1I error curve. This procedure is then repeated for all
subjects in the data base. Clearly the Trues vs. Trues error rate is a kind
of confusion rate, comparable to the situation in which one subject claims
the identity of another subject but attempts to use his own signature for veri-
fication. However, this is not a very realistic measure of the system's
Type 1/Type 1I error curves and is included here only because this type of
error-rate calculation is very common in the literature. Following the pre-
sentation of Trues vs. Trues Type I/Type II error curves, we present the
Trues vs. Attempted Forgeries Type I/Type II error curves. In this case the
Type I error curves are calculated in the same way as the above, but the
Type 11 error curves are computed using attempted forgery data.

a. Trues vs. Trues

The initial set of 44 features was described in III-A-2. To select a
"best" subset of the 44 features we began by dividing the signature data into
two sets, a training set and a testing set, Because we collected an equal
number of sitting and standing signatures,+ a natural division was made on
this basis. To begin we used the sitting signature data as the training set
on which feature selection was performed in order to determine a best subset
of the 44 original features (i.e., the subset that yields the least error
rate). Using the feature selection method described in III-A-3, the best sub-
set consisted of Features 1, 2, 3, 6, 11, 12, 13, 14, 16, 20, 22, 25, 26, 27,
28, 29, 30, 32, 33, 38, 40, 41, 42, 43, and 44. These features are described
in III-A-2. The standing data was then used to calculate the Type I/Type 1I
error curves, the result of which is shown in Figure 6. To compare results
we will use the point at which the Type 1/Type II errors are equal (i.e., the

*
See III-A-4 for more details. Recall that the Type 1/Type 11 errors are cal-
culated based upon allowing three tries (signatures) per verification trial.

+81gnatures were obtained froq_subjects both sitting down at a table and
standing at a counter. See Section II for details.
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percent error where the curves intersect), which is called the equal-error
rate. This equal-error rate, indicated by the horizontal dashed line in
Figure 6, is about 1.5 percent for the standing data. To cross-validate the
results we revecsed the roles of the sitting and standing data. In this case
the standing data were used to train (i.e., for feature selection) and the
sitting data for error-rate calculation. The feature set selected using the
standing data was the same as had been derived using the sitting data. The
Type I/Type II error curves for the sitting data are shown in Figure 7. Com-
parison of Figures 6 and 7 show the error curves to be essentially identical,
so the cross-validation yielded very consistent results, which gives us added
confidence in the results. It may also be concluded that there is essentially
no difference in performance whether the subject is sitting or standing when
he writes.

b. Trues vs. Attempted Forgeries

For the Trues vs. Attempted Forgery* Type I/Type II error-curve calcula-
tions we decided to use the same set of best features that had been used for .
the Trues vs. Trues calculations. The reason for this is that the generality
of the forgery data is uncertain because very little is known about the
forger population. In any case, the use of the Trues vs. Trues feature set
is a conservative approach, and there is no question of testing and training -
on the same data set.

The Type I/Type II error curves for the standing true-signature data
versus the attempted forgery data are shown in Figure 8. The equal-error rate
is approximately 2.25 percent, somewhat worse than the 1.5 percent equal-error
rate of the Trues vs. Trues data. The Type I/Type II error curves for the
sitting Trues vs. Attempted Forgeries is shown in Figure 9. The equal-error
rate is almost 3 percent.

Data analysis showed that almost all the forgeries occured for the two or
three true signers who were the most inconsistent in writing their signatures.
A simple enrollment criterion based on the total variance of the template was
subsequently tested. If the combined standard deviation was larger than some
assigned threshold, the subject failed the enrollment criteria and was ex-
cluded. This resulted in the exclusion of three subjects out of 58 and 1
yielded considerable improvement in signature verification performance.®
Figures 10 and 11 show the Type 1/Type II error curves (for standing and
sitting data, rgspectively) when this enrollment criterion is used. The

*In attempting to forge a signature each forger was allowed up to 18 tries,
nine before viewing the video tapes and nine after. Because we found that
there is only a slight difference in the error rates for the two conditions,
the Type II error curves presented in this section are calculated using the
combined set of forgery attempts.

+This behavior is typical of verification systems. Usually most of the errors

¥ are contributed by a very small percentage of system users.
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equal-error rates are reduced to 1.75 percent for the Trues vs. Forgeries
(standing) and to 1.25 percent for the Trues vs. Forgeries (sitting). By mak-
ing the enrollment criteria even more stringent, to where six or seven of the
most inconsistent subjects (out of 58) are excluded, the equal-error rates are
on the order of 0.5 to 0.75 percent.

Tests were also made of the effect of allowing the forgers to view video
1 tapes of the true signers writing their signatures. The error rate was
slightly worse when the forgers were allowed to view the video tapes, which
implies that the forger can learn something of the signature dymamics by
closely observing the true signer. The total effect, however, was not partic-
ularly significant.

3. Performance Results for Individualized Feature Sets

As discussed earlier, improved performance can be expected when individu-
alized feature sets are used. In this section we show, by example, the kind
of improvement that can be expected. Of all the data base subjects, CMS was
the worst in the sense of contributing the most to the Type I/Type II error

rates. In Figure 12, the solid lines are the Type I/Type II error curves for
subject CMS's true signatures vs. attempted forgeries using the standard
feature set described in IV-A-2. The equal-error rate is over 6 percent.
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The individualized feature set for CMS, which was derived using the method
described in I1I-A-3, consisted of Features 1, 2, 6, 11, 13, 16, 26, 27, 32,
38, 40, and 44.* The Type 1/Type Il error curves for subject CMS using this
individualized feature set are given by the dashed curves in Figure 12.

Note the substantial improvement compared to the Type I/Type II error curves
for the standard feature set. 1In fact, for the individualized feature set
there is no cross-over at all of the Type I/Type II error curves, and so

the equal-error rate is zero. However, this is based on a small amount of
data (one subject's true signatures and the associated attempted forgeries)
and it would not be appropriate without extensive further testing to con-
clude that individualized feature selection would yield a Type I/Type II
error rate of zero. However, based on this result and previous experience,
we believe (but have not proven) that a conservative statement of the im-
provement which could be expected from individualized feature selection is
that the equal error rate would be reduced by at least a factor of two
(i.e., the equal-error rate would be on the order of 0.5 percent or better
rather than the 1 percent as given in the preceding subsection).

B. Correlation Technique for Signature Verification

The rubbery correlation algorithm for signature verification was de-
scribed in I1I-B. Because of time limitations and the fact that our PDP 11/40
computer was down with hardware problems for more than two months, we were
unable to process the entire data base using the correlation algorithm. How-
ever, the main question is whether the rubbery correlation technique is ‘more
effective than the features technique for signature verification. To answer
this question we processed true vs. attempted forgery data for those subjects
for which the features technique yielded relatively poor performance. As
discussed in IV-A-~3, subject CMS contributed a high percentage (more than
6 percent) of the errors that occurred with the features technique. For the
same set of data, subject CMS's Type I/Type II error curves for the rubbery
correlation signature-verification algorithm are shown in Figure 13. These
results may be compared with the Type I/Type II error curves (indicated by the
solid lines in Figure 12) for the features technique. There is no overlap in
the curves in Figure 13 and so the equal error rate is 0, a dramatic
improvement.

Although we were not able to process enough data with the correlation
algorithm to give a statistically confident estimate of the Type I/Type 1I
error curves, our tests with some of the problem subjects, such as that for
CMS described above, suggests very strongly that the correlation technique is
substantially superior to the features technique for signature verification.

As noted earlier, the problem with individualized feature selection is
the requirement for a long enrcllment period with many signatures. However,
this is not a problem for the correlation algorithm. The results for subject

*
These features are described in II1I-A-2.
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CMS described above were based on using only the first nine signatures for
enrollment. The only disadvantage of the correlation technique, compared to
the features technique, is somewhat increased processing time and increased
computer storage requirements for the subject templates. For high-security
applications, these disadvantages are probably not very important.

C. Features Technique for Subject Identification Based on a Handwritter
Sequence of Five Numerals

In this section we present the results of the analysis of ghe handwritten
numeric sequence data base using the SPSS program DISCRIMINANT. The SPS3
control file' used for the data analysis, which is shown in Figure 14, was set

*

See III-C for the reasons that we chose to use the SPSS programs for the
numeric sequence analysis, as well for references relating to program docu-
mentation and data analysis algorithms.

+The use of the SPSS control file and the many program options is described in
detail in N, H. Nie, et al., SPSS, 2nd ed. (New York: McGraw-Hill, 1975).
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RUN NAME RADC SIGNATURE DATA, FEATURES SELECTED 11~MAY-8! AT 08:46:35
Yﬁgbénhgb%égr sUTHOR +SEQUENCE, POSIT!ON TRUEFORG,FEATURO] TO FEATUR44
INPUT FORMAT FIXED(2F3.0,2F2.0,7F10.3 . /,10X,7F10.3, /,10X,7F16.3
» /,10X,7F10.3, /,10X,7F10.3, /,18X,7F10.3
y /,10X,2F10.3)
VALUE LABELS AUTHOR ( 1)AAF ( 2)AEP ( 3)AEW ( 4)AS] ( S)BEP ( 6)BJG
¢ 7)CAU ( 8)CBW ( 9)CEP (10)CMS (11)DEP (12)DRB
(13)DWV (14 ELF (IS)EMW (I6)FET (i7)FJM (I18)FLL
(19)GAN (20)GEG (21)GEW (22)HEP (23)HFS (24)JCZ
(2S)JEE (26)JEM (27)JEP (28)JI]S (29)JLP (30)JNH
(31)JRL (32)KCN (33)KES (34)LAL (35)LEL (36)MAB
(37YMAN (38)MER (39)MFA (40)MRC (41)0EK (42)PER
(43)PES (44)PJP (45)PLH (46)RAB (47)RTK (48)RWH
(49)RRR (50)SAW (51)SDJ (S52)SEA (S3)SEC (S4)SEM
(55)SRW (S6)TDK (S7)TPP (S8)TSS (59)VKR/
POSITION (O)STAND (1)SIT/
TRUEFORG (@)TRUE (1) FORGER/
N OF CASES UNKNOUN

SEED STANDARD

COMPLTE WGTVAR=1

IF (UNIFORM(1) LE 90.5) VWGIVAR=0
WEIGHT WGTVAR

PRINT FORMATS FEATURO!,FEATUR1!,FEATUR21,FEATUR41,FEATUR44 (3)
LIST CASES CASES+= 100/
VARIABLES=AUTHOR, SEQUENCE, POSIT ION, TRUEFORG
FEATURO1,FEATUR1 | ,FEATUR21,FEATUR41,FEATUR44/
READ INPUT DATA

DISCRIMINATE  GROUPS=AUTHOR(1,59)/
VARIABLES=FEATURO! TO FEATUR44/
ANALYSIS=FEATURO! TO FEATUR44/

METHOD=D IRECT/

PRIORS=EQUAL/
OPTIONS 5,6,10,11,12,20
STATISTICS 1,2,3,4,6

FIGURE 14 SPSS CONTROL FILE

up so that the DISCRIMINANT proram used approximately half (by random selec-
tion) of the 1,740 numeric sequences in the data base for training ({.e., to
estimate the discriminant functions) and the other half for testing (error-
rate calculations).

The basic result was that 90.4 percent of the numeric sequences in the
testing data set were classified correctly; that is, 90.4 percent of the time
a subject was identified correctly based upon a single handwritten numeric
sequence. This recognition rate can be improved by allowing the subject to
try again if his first handwritten sequence fails to identify him correctly.*
The 95 percent confidence limits on the 90.4 percent recognition rate are
*+2 percent.+

%
For example, assuming independence, the recognition rate allowing two trials
would be 99.1 percent.

90.4 percent is an estimate of the true recognition rate for the population.
The confidence limits simply state that we are 95 percent sure, given the
estimate of 90.4 percent calculated from the data, that the true population
recognition rate is between 88.4 and 92.4 percent.
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Figure 15 presents a summary of the identification results on a subject-
by-subject basis. The vertical column of initials is the actual author of
the numeric sequence and the horizontal row of initials along the top gives
the initials of the subject identified as the author (which may or may not
correspond to the true author, depending on the success of the identification
process). For example, the first subject on the vertical column of subject
initials is AAF. Looking across that row we see that 17 numeric sequences of
! AAF were tested and all correctly identified as having been written by AAF;
all 17 responses are listed under the column headed AAF. Similarly, there
were 12 total numeric sequences tested for subject AEP and all 12 of them were

Dihika btetahu ciintin tEeb A A el

identified correctly as having been written by AEP.

for AEW, we see that there was a total of 15 numeric sequences tested.

Reading across the row

of

these, 14 were identified correctly and one was incorrectly identified as

CBW
CEP
cMs
DEP
DRB

ELF
.g £
T rer
3 FIN
- FLL
5 GAN
& cec
< ew
HEP
WFS$
uz
JEE
JEM
JEP

JLp
JNH
JRL

~ES
LAL
LEL

AAF

1?7

AEP

12

AEW
AS1
BEP
.81
CAU
CBW
CEP
oS
DEP

18
15

13
13
14
17

DRB
DWV
ELF
B
FET
FIM
FLL
GAX
GEC
GEW
HEP

15

1

1
14
18

17
10 2
12
16
13

1IDENTIFIED AUTHOR

HFS

13

iz
JEE
JEM
JEP
JJS
e
JNH
JRL
KON
KES

11

13
15

18

13
1?7

15

20

FIGURE 15 SUMMARY OF IDENTIFICATION RESULTS SUBJECT BY SUB'ECT
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having beem written by subject AAF. If the recognition rate were 100 percent,
there would be no off-diagonal terms in Figure 15. Only about half of the
subjects are listed in Figure 15 because a 59 x 59* identification table would
not fit on one page. The intent, in any case was not to exhaustively list all
the subject-by-subject identification results but to present an example of how
the identification results were distributed.

D. Human Engineering and User Acceptance

Among the subjects polled, there were only two minor complaints concern-
ing the signature verification system. The first of these was that it was
difficult to see what one was writing because of the relatively large cylindri-
cal structure at the writing end of the pen. The second had to do with the
wire attached to the pen. However, all subjects adapted very quickly, and
these problems did not affect the system's operation.

®
All 59 subjects were used in this part of the analysis.
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V  SUMMARY

In previous sections we described the data base and data collection proto-
col, the signature verification algorithms and associated data base analysis
: procedures, and the results of the performance analysis. The performance
analysis section presented estimates of the access time and Type I/Type II
error curves for three signature verification algorithms* under a variety of
conditions. In this section we provide a summary of the most essential results
of the performance analysis.

The average access time was 8.5 seconds, dominated by the time required
to write signatures. Type I/Type Il error curves for the features technique
using a standard feature set for all subjects was shown in Figure 11. The
equal-error rate (the percent error at the point where the Type I/Type II
curves intersect) is slightly more than 1 percent. These curves were calcu-
lated using attempted forgery data and all the true signatures in the data
base collected with the subjects sitting at a table. The 648 attempted forg-
eries were obtained from trained forgers who were given copies of the true
signers' signatures, instructed in how the signature verification system
worked and what it measured, allowed to watch video tapes of the true signers
writing their signatures, and allowed to practice as much as they desired

‘ over a three-week period. Enrollment criteria, based on the variance of the
template, were imposed so that subjects who were extremely variable in writing
their signatures were not accepted by the system. Of the 59 subjects in the
data base, only three were unable to meet these enrollment criteria.

We believe that the Type I/Type II error curves in Figure 1l provide a
realistic and probably conservative estimate (i.e., slightly worse than it
really should be) of system performance for the following reasons:

The same feature set was used for all subjects.

e Careful separation of testing and training data was always maintained.

The analysis simulated a real-world enrollment procedure in which only
‘ a few signatures were available from which to construct the templates.

\ e In a real-world signature-verification application, a subject risks
being denied access if he is careless or sloppy in writing his signa-
ture, but there was no comparable motivation for the subjects to
cooperate in the type of data collection effort described here. In
an attempt to provide at least some motivation, cash prizes were
offered for the most consistent signatures, but in practice this was

*The three signature verification algorithms were a features technique based

on a standard feature set (i.e., a single best set of features for all sub-
| jects collectively), a features technique based upon individualized feature
i sets (i.e., a best feature get derived for each subject individually), and a
1 "rubbery" correlation algorithm.

43

"‘ N .." ‘:_. . M A. v - . ' ’ N " j

.
AT T ke VW L % T N M




not greatly successful. The lack of motivation led to increasing
signature variances toward the end of the data collection period for
most subjects, which probably caused some overestimation of the
system's error rates.

Signature verification based on the features technique but with individ-

\ ualized feature selection was also considered. This algorithm was tested
using the problem subjects (the few subjects in the data base who caused es-
sentially all the errors) and yielded substantially improved performance
compared to the features technique based on a standard feature set for all
subjects (on which the results of Figure 11 are based). Although we were
unable, because of time limitations, to process enough data to obtain a sta-
tistically confident estimate of the Type I/Type II error curves for individ-
ualized feature selection, based on the results of our limited testing with
problem subjects and our previous experience, we believe that the equal-error
rate is probably at least a factor of two better than for the features
technique using a standard feature set for all subjects. The primary dis-
advantage of individualized feature selection is that it way require a
relatively large numer of enrollment signatures.

Finally, the "rubbery" correlation algorithm was also tested using the
problem subject's data. Compared to the features technique based on a standard
set for all users, there was a dramatic reduction in error rate. However, as

h was the case for the individualized feature selection technique, because of

[ time limitations we were unable to process enough data to provide a statisti-
cally confident estimate of the overall system Type I/Type II error curves
for the rubbery correlation algorithm. This procedure used only nine signa-
tures, comparable to that required for the standard features technique. The
only disadvantage of the rubbery correlation technique is that it requires more
processing time and computer storage for subject templates.

In sum, dynamic signature verification based on a three-axis pen system
yields equal-error rates on the order of one percent using a features algo-
rithm and a standard set of features for all subjects. Analysis of a limited
data set indicates that a substantial reduction in error rate can be obtained
by individualized feature selection or rubbery correlation algorithms, but at
the cost of an increased computational burden. These are promising areas for
future development. {
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DESCRIPTION OF THE MAGNETIC TAPE CONTAINING
THE SIGNATURE VERIFICATION DATA BASE
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DESCRIPTION OF THE MAGNETIC TAPE CONTAINING
THE SIGNATURE VERIFICATION DATA BASE

A summary of the true signature, numeral, and forgery data was given in
Section II. This data is stored on tape RADC SIGNATURE DATA BASE. The tape
was generated using PIP (the version that supports magnetic tape reading and
writing) on our PDP 11/40. It is a nine-track, 1600-CPI tape, with volume

label = JSO. To read this tape on the PDP 11/70 under RSX 11-M the following
steps are required:

1. Mount the tape on a 1600 CPI, nine-track tape drive.
2. Allocate MT: (MCR > ALL MT:),

3. Mount the tape (MCR > MOU MT:JSO).

4. PIP can now be used to copy the data on the magnetic tape to the
system disk (or some other disk). For example, to copy file
TEST.FTN to disk DR#: use

PIP>DR@ = MT:TEST.FTN/BS:8192.
must include period

Note: Not all versions of PIP read from device MT: properly,
so the correct version must be used.

The true signatures for a subject are stored sequentially, one signature per
record, in a file of the form

TABCXABC. DAT; 1

where ABC is the initials of a particular subject. Since there were 59 sub-
jects in the data base, there are 59 such files on the tape.

Similarly, there are 59 files of numeral data for each subject. These
are of the form

NNUMXABC.DAT;1
The attempted forgery data is of the form

FABCXDEF.DAT; 1

where ABC are the initials of the true signer and DEF are the initials of the
forger.




A test program, TEST.FIN, to read data from the signature, numeral, or
forgery files and write the data out on a file TEST.LST is provided on tape
RADC SIGNATURE DATA BASE. This program and an example of the programs output
is given below.

As shown in the test program listing, the form of the read statement for
a particular record (or signature) is

READ(2) SAMPID, AUTHID, NSAMPS, ICORT, IDORW
(IDATE(I),I=1,5), (ITIME(I),I-1,3)
MNRESP ,RMSDIF, (OLDVAL(J) ,J-1,44),
((JDATA(K,I),I=1,NSAMPS),K=1,3)

SAMPID is the label of the response and AUTHID i{s the writer identification.
For example, if the record contained a true signature of subject ABC then
SAMPID = ABC and AUTHID = ABC. If it is a numeral by the same subject then
SAMPID = NUM and AUTHID = ABC. For the forgery files SAMPID contains the
initials of the true signer and AUTHID the initfals of the forger. NSAMPS is
the total number of P, X, or Y samples. NSAMPS * 0.01 gives the length in
seconds of the signature. The array OLDVAL contains the values of 44 features
discussed in III-A-2 and DATA contains the P, X, Y data (DATA is of size
3I*NSAMPS).

7
jEE 48
L{ | ;"
: !
r’ W—_" ——T—T——ﬁ- -
L -I-I":". . L ——
: . S~ arr. - o By >e—— - ——
e Al e i - s v




opew

Prugrea TENT.FIN

This progean reuds o dats (ile tspecified by Lyping in the
subjects inilinlg) wad priets onl the dels in sSpecified records ue
fite TENT.LNT. The progrem prudpls the operator (ur the recurd
sunbers tu he priated ovt. Eoch record contuins uil the dale fur
a parliculer tree signature, or nitempled forgery. To
get o hardcpy of lthe owlput, fe TENT.LNT 1+ the line
printer ¢ sie PIF & d the su ch - I’IP-'H\T INT/NP?
DIMENSION OLUVAL (et , lDA?E!Sl ITIIUJ' JDATAIJ 30001
DINENSION RKARDAT ¢9)

[laTelplalyTalyts]

ASSICN6, m TL\T LS? i,

Coovan= -

Get the initiels of the subuel
TYPL

c- ......... ———- - - -
[y Inluhn e dish file 1. receive lohn“--. primlovt
CALL

S POIIAT!/‘. True u.ulur;; Nnnul. vr Forgery duta’

. T.N. or

ACCEPT 7, IC“I.

7 FORMATIADY
TYPL 10

19 FORMAT(/'8 Initi1als of 1he tree sigaer (3 charsclers) ')
ACCEPT 1S, AUTHOR

1S FORMAT(AD)
IFCICHECK \EQ. ‘F') GO TO 22
TFVICHECK L EQ. "T'0 ENCODEC 18,28, NAMDAT 1 AUTHOR ., AUTHOR
1FCICHECK . EQ. *N*) I.\CODEHO ’I Mlb.\'l" AUTHOR

20 FORMAT°220:T°,A3.'X', -DAT:

21 FORMAT:'ZZu:NNUM' . 'X* AJ.' DAT: l l

GO 10 2

22 IYPL

23 FOR!A‘I’V'. Initiels of the Forger (3 characlers) '}

24 FORGID

ACCEPT 24,

FORVAT 1A3)

ESCUDE V)8, 25 Mnm'r: Al TIOOI FOIGID
28 FORMAT:'Z20:F" A3, -BaT:

22 TYPE 2%, NAIDAT
38 FORNAT (/° The file vpened is ' ,9A2)
24 CALL ASSIGN12 NANDAT, I8

[ Get (he numder of the respuasze 1o be printed or plotied
IEHM) 2

PE 36
30 POINATU'O Record avaber (integer) o °)
A(.\“H’; ?l +NUNKEC

[ Skip rec.rds Eolr, !Mmg’n;ol g’cihu

IF tNL '!I(FC i)
DO 36 1s1,NIMREC-)
c 36 nunw
c Resad 18 the dats frum the specilied recurd
7 IFCICHECK EQ. g
READ(2)  SAWPID, mmw NSANPS, ICOXT . 1DORY
. LUEDATECD), 131,80, (iTIME LY, fst + 30 ANHESP , RUSDIF
. JIOLDVAL(S), J=1,44), JDATAIK. §) 151 NSANPS), Kel, 3
GO 10 S8
39  READ(2) SANPID,AUTHID . NSANPS, IDED
. VOIUATECHS, 51,80, CITINLC 0, Tel,30 NAKIND, RNNDIF
. 40I||\\I(J'. J-I 4 JCCBDATAR L DY, I-l \\\!l'Ql kel
L8 N 41 daln value
1) \Nl}h(. (4] \All’ll' ALTHID NSARPN  NNSREST  RRSDLF, LUATE, 1T INE
NITHIE

WRITEG, Sﬁl 1, 0LDVAL (1), Lo} &)
WRITH 16, QH
DU S1 11 NSANPS
WRITL 6, 59| 1. J0ATACL. 1) JUATA2. 1) JDATAI Iy
51 CONTINUE
52 FORMAT ¢ 1H1,5X,° NANPID o 'M X, ‘Al'ﬂllll . 'A4 X, UNSANKS « 14
hd 3L CHNRESP » 13,0, RSD ‘6.2
. /7,55, DATE = 'SAZ.S\ "l’lll . 'SA2)
S4  FONMATI//723%,°1°, 7K. Feslura Velue'/s
55 FUNMAT (20K, 14.6K,F10.3)
So  FORMAT(IHI.23X.'0°.8X.'X valves',41.'Y velves®
. 53,'P volues*/?
c $9  FORNATI21X, 14, l!i 15,7, 15,8%,15)
[ Repeat if desired
c Allow ;.h; oplios 1o e1itl or to specify sncther record

TIYE 78
75 FORMAT(/'S Priat owt ssother record? (Y for Yes or N for No)')
AOEPT

*sse FAROR -- Record mumber oni of reaage ®%9¢°,/)

THE DATA AND PROGRAM OUTPUT
tS ASSIGNED TO A PSEUDO DEVICE
220:, BEFORE EXECUTING THE PRO-
GRAM, THIS PSEUDO DEVICE MUST
BE ASSIGNED TO THE ACTUAL DISK
ON WHICH THE DATA IS STORED.
FOR EXAMPLE, IF THE DATA IS
STORED ON DR1: THEN MCR: ASN
DRt: = 220:

FIGURE A-1 TEST PROGRAM LISTING
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PASH DR1' =220
PRUN TEST

True signature. Numeral. or Forgery data (type T.N. or F) T

Initials of Lhe rue signer (3 characters) CMS

The file opened i1s 220 ' TCMSXCMS . DAT.1
Wwcord number (integer) = 3

- Print out another record? (Y for Yes or N for No)

FIGURE A-2 EXAMPLE OF TEST PROGRAM EXECUTION




i
' |
{
1
1
SANPID = AUTHID = CNS NSAMPS = 672 MNRESP = 3 RMSDIF = 1.73
DATE » ©2-JUN-00 TINE = 12:54: :
1 Foeature Value !
i -2.309 :
. 2 26.963 :
3 17.886
4 -24.024
s 8.259
6 6.867 :
7 386.000 i
8 -10.019
9 263.000
10 48 . 000
11 -6.95S
12 37.471
13 16.829
14 -29.073
15 8.439
16 7.095
17 385.000
18 -10.111
19 264 .000
20 50.000
21 24.462
22 37.629
23 21.513
24 -24.3962
25 8.638
26 7.138
2?7 346 . 000
28 -8.830
29 393 . 000
0 42.000
31 41.910
32 45.902
a3 45.975
34 20. 195
35 23.784
% -2.948
37 %11,-713 NOTE: Program TEST writes this dats
o eI out to file TEST.LST:1 instead of
40 6.650 directly to the line printer.
41 5.000
42 0.580
43 6.900
44 6.970
1 X valves Y vealwes P valses
1 -1 1 1
2 -1 e 3
3 ~1 3 [
4 -1 4 11
S -3 9 1S
8 -S 11 21
2 -S 13 29
8 -8 1S 3
9 =10 18 43
1@ -11 21 49
11 ~14 24 -4
12 =-iq 24 6S
13 21 13 71
14 -3 -9 Kl
1s -42 -32 (]}
16 -S| -47 86
17 - -59 89
18 -S8 -8S 90 -
19 -81 -70 91
20 -8) -7 92
21 -8 -7 95
2 -S| -2 99
b <] -48 - 102
24 -2} -84 107
23 -S -48 106
28 3 -3 104
F 14 1] -18 162
F . d 14 -8 99
2 18 -3 93
» 16 s 89
3l 14 12 6

FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST
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FIGURE A-3

16 84 119 13 =43
19 83 120 17 =35
18 81 121 17 -24
1 78 122 20 -16
3 77 123 20 -9
-9 78 124 20 -2
~17 78 128 17 3
~25 79 126 12 7
~34 79 127 I 8
~39 82 128 1o 12
~S1 87 129 4 11
g kB l= i
-76 as 132 -23 ~12
-84 98 133 -28 ~24
~92 103 -32 ~39
-182 106 135 -34 ~52
-193 113 126 -37 ~61
-35 119 137 -37 ~72
-82 122 138 -36 -82
-69 123 139 -33 ~89
-56 116 149 -24 -99
-a5 102 141 -1s -84
-32 82 142 ~1 -74
-21 57 143 9 -63
-4 42 144 17 -48
-3} 28 148 20 -32
-6 21 146 20 -19
-6 13 147 22 =11
-3 9 148 21 -4
SN B
= v
3 a 151 9 8
~1 2 152 8 8
2 | 183 ] S
-1 2 154 ? 9
1 2 155 ? -10
-1 2 156 6 -19
-1 S 157 6 =31
[l 1 158 s -41
-3 8 159 4 -52
~7 15 168 ] -62
~9 26 161 -6 -68
=1} 38 162 ~13 =71
-11 49 163 ~19 =12
-11 62 164 -29 =71
-9 72 16S ~38 =72
-7 79 166 ~45 -69
-5 83 167 ~45 -70
-2 8S 168 ~42 -74
-2 84 169 ~35 -76
-d 80 170 -23 -7
-5 78 171 -1l -68
-8 73 172 (3 -60
-12 69 173 8 -48
-22 €8 174 11 -42
-29 65 175 15 -32
-33 63 176 16 -22
-34 60 77 18 =13
-34 59 178 17 ~2
-34 62 179 13 6
-29 €S 180 10 12
-24 €9 181 3 17
-1s 7 182 -4 is
-4 74 183 -1
-t 78 184 ~18 -19
s 79 185 -25 -32
8 82 186 -39 -48
13 80 187 -28 -68
14 by 1 ~24 -78
9 8§ 189 -14 -85
L 81 -2 -83
-1 81 191 6 -73
-9 20 192 12 -62
-13 ” 193 15 -44
-23 82 194 14 -23
~29 84 195 1e -4
-~37 86 196 H] ?
~42 6 197 3 12
~47 88 198 1 i3
-$3 91 199 -2 13
~58 92 . .
~63 94 201 -12 4
~63 95 202 =13 -8
~60 95 203 =14 ~24
~58 97 204 =11 -39
~49 96 208 ~8 -S8

[ 4

EXAMPLE OF OUTPUT OF PROGRAM TEST (CONTINUED'
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34 9 {16 467 3 -34
» 17 114 468 » -2
29 19 109 469 34 -8
22 23 100 479 3% 3
18 26 90 47) 36 12
1@ 29 82 472 3s 13
-1 3 7% 473 32 19
-8 2% 74 479 ~Q ay
~15 10 74 47> -3 32
-22 -5 hed 476 19 k)
~25 -23 82 477 12 33
~26 -41 88 478 13 31
~22 -52 93 479 12 b -]
~18 -8l 110 480 10 26
~l4 -97 122 48) 4 18
~12 ~111 134 482 -1 3
~12 ~125 143 483 -1 ~18
~15 ~13 1S3 484 -18 -37
~18 ~135 iS58 485 -28 -S2
~25 ~132 160 486 -29 “64
-6 ~119 157 487 ~31 -7
-53 ~98 156 488 «33 -85
~54 =72 143 489 ~36 -99
~68 49 131 499 -37 -93
-66 -~32 11 491 38 -95
A B T B
-46 -13 81 494 - -98
-36 -19 s 49S -25 ~96
-3 -29 n 496 -18 -92
-8 -33 e 497 -5 -83
2 -3s 83 498 s -72
i1 -36 93 499 13 -59
17 ~34 102 S60 18 -41
23 -3 11l 501 20 -26
28 - 120 02 22 -14
32 -23 128 $63 23 ~4
% -19 13§ S04 22 2
33 -8 142 $0S 22 8
% =1 142 506 20 11
2 11 141 507 ) 6
27 20 137 508 2s 3
28 27 131 509 25 -9
29 33 122 510 24 ~38
17 k3 111 511 19 -S54
13 3% 198 512 12 -68
9 37 29 513 2 -T2
8 32 o] Si4 -11 =71
8 28 89 s15 -26 665
6 29 94 516 -40 -50
3 8 96 517 -47 -39
~5 -13 162 s18 =49 -~27
-14 ~38 o8 si9 -49 ~18
-21 ~S56 113 520 -A8
-28 ~67 18 S§21 -43 -3
-33 -72 119 522 =36 -4
-39 -7 120 $23 -26 -10
-43 -84 123 524 -13 -18
-48 -88 124 §25 -3 -24
-52 -9l 128 526 7 -29
-5 -92 124 527 \7 -3\
-47 -97 123 528 ~33
=36 =99 127 529 28 -39
-26 -99 130 530 3i -26
-12 -96 133 $31 33 -20
3 -87 136 532 % -18
13 ~75 136 533 3s -8
22 -65 140 534 3 5
27 ~52 138 535 28 14
4 ~38 135 $36 21 2
3 ~22 127 537 1? 2
28 -7 119 $39 10 k1
22 4 1ie $39 3 28
19 13 98 $40 -8 24
4 H | @ = 4§
A g | s 5 e
-15 -9 &S 545 =32 -1
-20 ~23 67 546 -30
-22 =35 70 547 -23 -7
22 -43 74 S48 -13 -8
-14 =53 81 549 -4 -84
-6 -58 97 sse 8 -99
18 gt 1% 55 » e
22 -47 1S 553 3 ~44

FIGURE A-3 EXAMPLE OF QUTPUT OF PROGRAM TEST (CONTINUED)
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$54 a3 -26 1ee 6i4 3 % 142
$SS 30 -6 139 61S -11 3s 12
556 23 6 134 616 -17 28 160
587 1? 17 127 617 -17 19 7%
ss8 7 26 118 cis -13 13 $6
$59 -3 27 105 619 -9 8 0
$60 -11 28 93 620 -6 6 27
561 -17 24 82 621 -5 S 19
$62 -20 s 74 622 -3 2 1S
$63 -2] 9 64 623 -2 1 10
64 -23 1 62 624 -1 e 8
565 -22 -7 59 628 -1 1 S
$66 -29 -15 61 626 -2 2 4
562 -14 -26 64 627 0 3 4
$68 -10 -35 68 628 -2 9 3
569 -1 -39 73 629 -1 -1 3
s70 4 -39 76 630 -1 -1 6
s 9 -33 82 631 -6 -2 19
s§72 1S -39 87 632 -12 -11 34
573 19 -22 90 633 -22 -16 S\
$74 21 -17 90 634 -37 -20 70
578 2| -10 87 635 -50 -22 87
i 576 21 -$ 86 636 €5 -24 185
577 23 -4 86 637 -69 -27 119
N 78 23 -6 86 638 -69 -26 121
579 23 -12 88 639 -64 -27 120
500 24 -18 92 640 -59 -22 i1l
$81 20 -34 101 641 -53 -18 99
582 3 -53 113 642 -41 -16 84
$83 S -69 122 643 -31 -11 64
584 -8 -80 133 644 -20 -8 44
58S -21 -81 142 645 -13 -5 20
586 -29 -8] 151 646 -1} -3 21
587 -26 -71 162 647 -1 16
588 -13 -53 169 648 -5 -2 11
589 4 -33 173 649 -4 -2 9
590 16 -17 169 650 -2 1 S
591 20 -9 163 651 ~4 1 4
] 592 28 -2 157 652 -2 e 12
$93 28 0 148 653 -12 9 29
594 28 3 138 654 -24 -7 S0
595 27 s 128 655 -40 -13 71
s 25 3 126 656 -53 -17 98
597 20 -12 123 657 -64 =21 124 1
598 8 -34 122 658 -7 -23 143
599 -3 -52 124 659 -69 -22 153
600 -13 124 -65 -22 146
601 -21 -73 127 661 -57 -21 128
662 - -79 129 662 -44 -20 104
603 -13 -81 131 663 -32 -14 7%
- -7 136 664 =21 -11 s2
605 15 -66 141 66S -14 -6 35
606 24 -54 146 666 -10 -3 24
607 3) -43 153 667 -6 -4 18
608 9 -26 159 668 -3 -2 14
609 42 -15 163 669 -3 -3 10
610 40 -6 164 670 -2 -1
N R1) 2 Q 1R7 671 -2 2 4
6i3 18 i55 672 e e 4
: FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST (CONCLUDED)
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AN ON-LINE DATA ENTRY SYSTEM FOR HAND-PRINTED CHARACTERS
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\ o~ ] .
Special Feotire

An On-Line

Data Entry System
for Hand-Printed
Characters*

H.D. Crane
Stanford Research Institute

R. E. Savoie
Telesensory Systems, Inc.

Introduction

The primary method of entering large amounts of rou-
tinely produced. hand-printed data into computer systems
is via manual keyboards. Manual retranscription, however,
entails a number of disadvantages such as extra cost,
delays, and errors. :

Optical character recognition attempts to bypass the
manual retranscription process by providing automatic
reading of source documents. However, since OCR
processing typically is separate from document origina-
tion, the generator of the document cannot realize the
benefits that accrue to real-time, on-line automated data
entry. Often there is no way of knowing when substitution
errors have ‘occurred. and OCR equipment is costly rela-
tive to other methods.

Real-time character recognition, i.e. capturing the
material as it is written, obviates the need for manual
retranscription or OCR, and provides for immediate
error detection and correction. However, a keyboard
that accommodates a large character set — plus a hard-
copy printer for each data entry station — can be quite
bulky and expensive.

Alternatively, a direct entry system may use an inexpen-
sive writing device to make its own hard copy and to
produce machine-recognizable code. Writing systems to
track pen motions have been previously described, but
such systems require special writing surfaces: or special
writing environments.? Therefore these systems, like the
keyboard printer, also tend to be bulky and expensive.

This paper describes a system that uses a specially
instrumented ball-point pen requiring no special writing
surface. Unlike many OCR techniques, the method
described is dynamic. That is. instead of a post facto
analysis of a complete input pattern — e.g., in terms of
loops. corners., and height — the character recognition
is based on real-time detection and analysis of the sequence
of writing directions taken by the pen. Each character is
described in terms of an allowed set of stroke direction
sequences. The character actually recognized by the system
can be echoed to be verified immediately by the person
generating the document.

March 1977
pp. 43-50 (March 1977).
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Monitoring the direction of motion

The writing system is based on the three-dimensional
force generated at the pen tip during writing. This force
consists of the downward force directed toward the paper
and the drag force in the plane of the paper.

From force measurements alone it is not possible to
derive an accurate measure of pen velocity (and therefore
of pen positionl, because drag varies with paper friction,
the exact orientation of the pen. and pen pressure.
Furthermore, the system has no knowledge of pen motion
when the pen is lifted from the paper. However, absolute
pen position (although necessary for entering pictorial
input material or for reconstructing the exact form of each
input character as drawn) is not necessary for character
recognition. It is sufficient, as we show subsequently, to
determine the sequence of direction movements, which is
readily obtained from the force measurement.

The force-measuring instrumentation is incorporated
into the pen tip without any instrumentation of the writing
surface or the writing area. The vertical force on the paper
indicates when the pen is “‘down" or “'up.” i.e.. on or off
the paper. The instantaneous direction of pen motion is
readily determined from the lateral forces in the plane of
the paper.

Three-dimensional force-sensitive pen

A previous article’ on a direction-sensitive pen and its
potential use in hand-printed character recognition showed
that English letters can be described by a sequence of
connected up/down” and left.right movements. The pen
used a pivoted writing shaft that moved in response to
the writing force and made electrical contact with one
of four segments of a commutator ring. Although the
device showed the feasibility of such an instrument, it
was crude and unreliable because it required mechanical

*This system was conceived and deveioped by the suthors at Stanford
Research institute. Xebec Svsiems. Inc.. Sames Claca. California, i
developing & commercial version of the system under liconse from SRI.
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motion of the entire writing shaft. A later version used
a light-emitting diode at the upper end of the pivoted
writing shaft; the light was directed toward a stationary
quadrant photacell. The position of the shaft was tracked
by monitoring the movement of the light with respect
to the phatocell. This optical system provided better force
sensitivity than the earlier version, but still required the
entire writing shaft to move. Also, both of these systems
required additional measurements to determine vertical
pressure,

In the most recent design. the pen point is mounted to
a diaphragm containing a system of strain gauges to
detect the instantaneous lateral and vertical forces on the
point. This version is shown in Figure 1. The pen point
must be maintained in a nominally vertical direction during
writing; the angle of the barrel can be adjusted to suit the
individual user.

Figure 2 shows the photographically etched strain-
gauge array, which is bonded to the diaphragm inside
the housing that holds the replaceable ink cartridge.
The center of the diaphragm is rigidly connected to
the pen body, as shown in Figure 3a. The force gen-
erated at the writing tip distorts the diaphragm, as
shown exaggerated in Figures 3b and 3¢. With normal
writing, the pen point deflects less than a thousandth of
an inch.

It is easier to describe the operation of the strain-
gauge system if we imagine that the eight gauges are
arranged in four pairs, as shown in Figure 3a, rather
than in the actual planar array form of Figure 2. Taese
pairs are connected electrically in a compound bridge
circuit (Figure 4) that isolates the three components of
the applied force. To see how the bridge operates, let X
and Y represent the left/right and near/far directions in
the plane of the writing surface, and P the vertically
directed force. A vertically directed force will cause the
diaphragm to bend as shown in Figure 3b. The four
gauges on the top of the diaphragm will be in compression,
and the four gauges on the bottom of the diaphragm
will be in tension. Hence, the voltages at Points A and B
in the upper bridge will change by the same amount and
in the same direction; these changes will cancel in the
differential amplifier in the X channel. The voltages at
Points C and D in the lower bridge will also change by the
same amount and in the same direction, so there will be
no change in the Y output either. However, the polarity of
change at points C and D is opposite to that at Points A
and B. Accordingly, the changes at all four points are
additive in the central amplifier which measures vertical
pressure. Thus. vertical force is monitored by the central
channel, with no first-order coupling to the X and Y
channels.

A lateral force in the X direction will cause the diaphragm
to bend as shown in Figure 3c. In this case, Points A and
B will move in equal but opposite directions. These
changes are additive in the output of the X channel but
cancel in the P channel. Thus, an X-directed force will
cause a change only in the X channel. Similarly, a Y-
directed force will csuse a change only in the Y
channel. An arbitrary force on the pen point can thus
be resolved into X, Y. and P components.

Note in Figures 3b and 3¢ that the polarity of strain on
the lower side of the diaphragm near the center is
the same as the polarity of strain on the upper side of
the diaphragm near the periphery. It is for this reason
that the four-pair gauge system can be realized in the
single-sided. planar array shown in Figure 2.

From the X and Y components of force, it is straight-
forward to determine the instantaneous angle of force
in che plane of the writing surface (i.e.. the direction of
writing), as well as the magnitude of the force in that

L2

(a)
Figure 1.

Figure 2. Schematic drawing of the photogr: etched
array of strain gauges that is bonded 10 a dle-
phragm inside the cartridge housing.

COMPUTER

®)

(a) Bail-point pen that measures the three-dimen-
sional force generated at the tip during writing;
(b} Replaceable ink cartridge snd balipoint-tip
assembly.
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CONNECTION TO
PEN 300V

()

)

© \)__.;

Figure 3. (a) A strain-gauge arrangement in which the paired
gauges are located on opposite sides of the dia-
pheagm; (b and ¢) iltlustration of the effect of 2
downward and lateral force (highly magnitied).

direction. The system also provides a continuous measure
of P, the vertical force (orthogonal to the writing surface).
Although the pen provides high resolution force measure-
ments, it is sufficient for hand-printed data entry to quan-
tize the measurements quite coarsely. In the vertical
direction. it is necessary to know only that the pen point
is “up” or "down.” i.e., when the vertical force is greater
than some threshold. The X and Y signals are quantized
into the four quadrant directions: up, right. down. and
left, symbolized by U, R. D, and L. *Pen-up.” symbolized
by a """, can be thought of as a fifth direction of motion.

The following section shows how these five direction
signals (U, R, D. L. and .) can be utilized in a practical
character-recognition system. In this system, the direction
of writing is sampled at a clock rate of approximately 30
to 100 per second. At this clock rate. each new direction
signal generally persists for many clock cycles.

Sequentiai character recognition algorithm

With the signais provided by the pen, direction of writing
is the only information available for character recognition.
As each character is printed. the pen generates 2 sequence

March 1977

Figure 4. Compound bridge for isolating the three-dimensional

torce components.

(L. U R D L

DR UL

-

CLOWr® JI0TU LW —

Figure 5. An idealized set of numeric characters. The symbols
U,R.D.L.. represent up, right, down, left, and pen-up,
respectively.

of direction signals describing its motion. With a reason-
abie set of constraints on character formation, the direction
sequences are sufficient for machine recognition of the
printed characters. Figure 5 shows a typical set of direc-
tion sequences that is unique for the ten digits. For exampie.
the sequence for a 1 is (D.). meaning a down stroke
followed by a pen-up. It would be trivial to design a
logic system to recognize each character as shown.
However, there is wide variation in the way people form
characters. It is advantageous, therefore, to allow as broad
a range of sequences as possible for each character.

One posstible approach to the ssquence-recognition prob-
lem is the "‘table look-up,” which lists all allowed sequen-
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Figure 6.

ces for each character; when a character is written, the
generated sequence is compared with each entry in the
table. Allowance for a wide variation in writing styles may
require an excessively long table. A more efficient way
utilizes a state machine with state transitions determined
by the direction sequences.’ By appropriately specifying
the state transitions., particular directions or direction
sequences may be ignored if they are not relevant to the
recognition process.

In this section. we consider the operation of such a
machine. The next section shows how the state machine
can be efficiently implemented with ROM components.

Figure 6 illustrates the portion of the graph of the
sequential decision machine chnc recocmzes the digits 1,

7. and 9. as well as the “‘erase” character. The design
demommm the range of possibilities that may be achiev-
able. The figure shows broad horizontal lines, which repre-
sent the various states of the machine, and vertical LINK
PATHS. which describe the state transitions. The ovals
at the bottom indicate output characters and the next
state following the output. The'logic structure shown is
that of a clase-4 state machine.’ in which both the next
state, gX.Q), and the output, {X.Q}, are determined by
the present state. X, and the inputs, Q. The highest
state of the machine, marked INIT (miﬁnll. becomes
energized whenever a character has been recognized. and
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INIT

A portion of the state machine logic associated with the 1,7, 9, and erase characters.

a new search begins. It is convenient to think of a
marker advancing through the graph as each different
direction is recognized in sequence. For example. an initial
left stroke would move the marker to state IL (Initial
Left). The marker would remain at State IL for as long
as the sampled direction signal remained unchanged. If
the writing subsequently turned down, D, the marker
would advance to state LD (Initial Left followed by Down).
Because the state-transitions depend solely on the direc-
tion sequences. the path through the graph is indepen-
dent of both speed of writing and size of characters.
Exceptions are the front-end and back-end timing delays
described below.

In & general state machine, any number of link paths
may leave a state. Each state of the pen machine has
six link paths, five corresponding to the five directions
(U.R.D,L..), and a sixth (described below) resuiting from
“‘timing out™ (i.e., remaining at an internal state with pen
up for a certain duration). Thus sach state has six possible
successors. If. in Figure 6, a particular direction is not
noted as a link path from a state, it means that that
direction returns the marker to that state. For example.
state DD (Figure 6, lower-left) is entered via a D

path, but a\amt&dmhv;l‘l‘ not move the marker,
nor a U signal. Only an or . signal following
the D will advance the marker.
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Let us now consider how this machine implements the
specific character recognition sequence for the character 1.
Although 1 is nominally described as a single downstroke
followed by a pen lift. the logic can accommodate a wide
variation of sequences that are equivalent. For example.
starting from the INIT state, sequences (D..). (U.D.).
{R.D..). and (U.R.D..) are all equivalent in moving the
marker to state AA. Furthermore, the (R.D..) and (U,R.D..)
sequences can be terminated with an R stroke — i.e.,
(R.D.R.) and (UR.D.R..) — without affecting the final
termination of the marker at Node AA. The (D.) and
{U.D..) strokes can be terminated with a U as well as
an R stroke — e.g.. (D.U..) or (UD.U..). Thus all these
sequences are equivalent to the (D..) sequence. The accept-
able ways to make the basic downstroke of the character 1
are summarized in Figure 7a. which illustrates the ability
of the logic to ignore the inevitable glitches produced by
human writers.

o 13T LTLLL
o 933938

@ @ — - 0
Figure 7. The basic variations aliowed in making the characters
1.9, and erase.

Provision for this range of spurious initial and final
signals, however, produces a conflict with the 7 — basically
an (R.D..) sequence — which would be treated as a 1.
To avoid this conflict, the seven is completed with a cross
stroke in the European manner.

This iflustration of the crossing of a character introduces
the problem of character segmentation. How does the sys-
tem know whether an (R.D..) sequence, for example, is to
be a 1. or whether it will subsequently be crossed, i
a 7? The conflict is resolved with the conditional output
logic implemented at state AA. To follow this conditional
output scheme. note that any of these cross-stroke
sequences — (R.). (U.R.), (R,U.). (UR.U,), or (U,) —
will advance the marker from Node AA through subsequent
states to the 7 output port. Any other sequence implies
that a 1 was intended and that the subsequent strokes
were the beginning strokes of a new character. (Note that
the cross-stroke sequences are therefore not allowable as
the beginning strokes of a character.) Thus, a left
stroke should signal a 1 and move the marker back to
state IL. where an initial left movement would have moved

_ the marker from an INIT start. Of course, many other

direction sequences can follow a 1. These all signal a 1
and move the marker to the appropriate internal state.
Coasider, for example. a 1 following a 1. The first 1 will
energize state AA. The subsequent (D..) sequence (or any
of its equivalences) will energize output port (1.ID), thus
signaling a 1 (the first 1) and return the marker directly
to state AA via state ID. In other words, a sequence of
1's will continually cycle through the output port (1,ID)
and then back to state AA through state ID.
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character. The former is described nominaliy as an (L.U.R.D..)
sequence. although variations are also permitted. In parti-
cular. the sequence can begin with a down stroke. ie..
{D.L. 1 and can end with a left stroke or even with a
left. up stroke. Accepted variations are shown in Figure 7b.
The erase character is basically a left stroke with the
allowed variations shown in Figure 7c.

We have noted that. from any state. an arbitrary output
code can be signaled and the marker advanced to any other
state. Let us note one other special capability: timing out.
A timing function is provided that measures the elapsed
time since the last pen-up. If the elapsed time before the
next pen-down is greater than some specified magnitude
{e.g.. 500 msec). the marker will automatically return :c
the INIT stace. and an arbitrary output can be signaled.
This is handled by treating the timing-outs as a sixth link
path from each state. Without this special timing action
a 1. for example. as the last character in a string would
cause the marker simply to advance to and remain at state
AA. With uming-out. a 1 output is automaticallv produced
and the marker returned to the INIT state.

ROM impiementation

The recognition logic can thus be thought of as a state
machine with five direction inputs (U.R.D.L.... a time-out
input. and a set of output codes ie.g.. ASCII code words!
A particularly straightforward synthesis can be achieved
with ROM logic. The use of programmable ROMs is
especially useful during the iteration of hink-path struc-
tures, because changes. can easily be made in the ROM
content rather than in the hardware.

Each state of the raachine is assigned a block of
addresses that contains all the link-path connections to
subsequent states plus the timing-out and conditional
output operations. Because it is possible to energize
conditionally an output port as well as advance to another
state. each location can contain either an output code or
a new state address lindicated by the most significant
bit of the word).

An efficient synthesis of the svstem can be achieved
with 8K (1024-word x 8-bit) IC chips. The most significant
bit (MSB) of each address is reserved as a flag to indicate
whether the subsequent 7 bits are to be treated as a state
address (MSB = 0) or as a 7-bit output code tMSB = 1.
The remaining 7 bits allow up to 2", or 128. state addresses.
Each state. in turn. has 8 link paths: the five directions
{U.R.D.L.) plus three others discussed below. Thus. each
state occupies eight addresses. and each 1024-word. 8-bit
ROM can therefore implement 128 states. exactly the
number addressable by the 7 bits. The numerics-only
machine from which Figure 6 is abstracted contains
approximately 75 states.

As shown in Figure 8, the 7 most significant bits of
the address of any particular location in a ROM are
specified by a state-address register (SAR). which specifies
a block of eight sequential addresses. A 3-bit link-path
address register {LAR) determines which of the eight
cells within the state block is selected. The ten bits
together specify one of the 1024 words of the ROM. the
output of which contains either the next state or an output
code. The LAR is set to 0. 1. 2. 3. or 4 according to
whether the current pen direction is pen-up. up. right.
down, or left respectively. It is set to 5 if the pen has
timed out. If the ROM word currently addressed contains
all zeros, the LAR is set to 6 on the next clock

Also shown in Figure 8 is a portion of the logic pulse. This is used to implement a conditional output when
associsted with the detection of digit 9 and the erase the next state is not INIT, as described below.
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Figure 8.
ROM addressing scheme.

To follow the ROM synthesis in more detail. consider
the hypothetical machine shown in Figure 9a. If we have
reached state HH (i.e.. SAR contains the address HH)
and the pen turns downward, the very first clock cycle
that recognizes the D direction will set the LAR to 3.
At that indexed location is the address of state JJ, as
shown in Figure 8b, which will be clocked into the state
address register. The LAR. however, will not change as
long as the pen continues to move downward. During that
time. each clock cvcle will address word 3 of state JJ.
which contains the address of state JJ. That is, stateJJ is
entered via a D signal. and the marker will remain atJJ
for as long as the D signal persists. {If the address at
word 3 of state JJ were other than JJ, a sustained D
direction would have caused the marker to move away from
state JJ on the next clock cycle after entering state JJ.)

1f the pen is subsequently moved to the right. the LAR
will be set to 2. and the address for scate KK will be
fetched. If the pen is lifted, ".”, the node address will
remain unchanged (LAR index 0 also contains address JJ),
but if the pen remains up for longer than the specified
interval, the LAR will be set to 5, where the code for
output character 3 is found, and the state address register
will be reset to the address of the INIT state.

All time-outs and most normal outputs will produce a
transition to the INIT state. The address of INIT is
chosen to be SAR = 0. so that this state transition can
be produced simply by clearing the SAR. Owing to this
choice, the address of INIT does not have to be stored
in the ROM.

For conditional outputs which do not return to INIT
icalled dual mode), it is necessary to store both the output
code and the next state address. The implementation of
this feature uses LAR index cells 6 and 7.

A dual-mode output is indicated when the contents of
the selected ROM word are ail zeros. For example, at
state JJ the contents of LAR 1 and 4. i.e.. U and L, are
zero. If the pen moves in either of those directions, the
all-zero ROM word will cause the LAR to be set to 6 for
one cycle and then to 7 for the next cycle. During the
first cycle. the code for character Y will be outputted
tbecause the MSB of that word is 1); during the subse-
quent cycle. the address for state LL will be fetched.
At state LL, a left movement will continue directly to
state MM, and a U movement will continue directly
through to state NN. That is. starting from state JJ.
8 U movement will move the marker to state LL and then,
during the very next cycle, to state NN. Inserting the
extra state. LL, avoids the more complicated conditional
structure that would be necessary if we had o program
the L transition from state JJ to one state and the U
transition to a different state.

Other functions could be added to each state. For
example. movements could be quantized into more than
four directions, or different LAR locations could be
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Figure 9. ROM realization of the state machine structure.

addressed if the movement ip a certain direction were
greater or less than some specified duration. These added
functions would, of course, require larger blocks of address-
es for each state location.

Although many trade-offs are possible — greater freedom
can be allowed in one character at the expense of others —
a state machine, whether realized in ROMs. PLA's, or in
a microprocessor, is efficient in handling a wide range of
variations without having to list or to account specifically
for every allowed sequence, or even svery slement of each

. This is in contrast to a table lock-up. which
requires a complete listing of all allowed sequences. The
design of recognition sequences in either case, however, is
still largely ad hoc, and the partial structure illustrated
in Figure 6 has evoived through many interactions to

performance.
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Performance characteristics

A major source of error for the novice is letting the
pen point rest on the writing surface in a static position
at the beginning or end of a character. A spurious pat-
tern of direction signals is produced because there is
strain at the pen tip even though there is no motion. To
avoid these spurious signals. the user must learn to move
the pen in the desired initial direction before (or just as)
the pen touches the paper, and to continue moving in the
final direction as the pen leaves the paper. Of course. many
spurious patterns can be tolerated (logical ‘‘don’t cares"’),
as has been snown in connection with Figure 6. Direction
signals are ignored during an initial dead time beginning
when the pressure threshold is first exceeded. This dead
time (typically in the range of 50-100 msec) helps to ensure
that the pen is moving in the desired initial direction
before sampling actually begins.

By delaying the use of direction-change information,
it is possible to ignore any final direction(s) that are
shorter than a minimum duration. This form of back-end
timing minimizes the effect of spurious tails at the end of
strokes. .

Another initial difficulty is learning to hold the pen
vertically. Any tiit biases the force pattern in the direction
of the tilt. With strong tilt to the left. for instance,
the direction encoder could continue to signal “left.”” even
though the pen were actually moving in another direction.

We have developed several effective 7 ds to learning.
Four direction lights continually signal the instantaneous
direction of writing, as determined by the signal processor.
Also, each character can be displayed on an accumulating
alphanumeric visual display and/or repeated audibly by
loudspeaker or earphone as it i3 recognized.

Most users quickly adapt to the smooth movements
required as the pen touches and leaves the paper and to
the need to hold the pen reasonably vertical, and error
rates typically drop to a few percent within an hour or
so of practice. After this learning pe€iind, surprisingly
variable writing can be tolerated, as illustrated in Figure 10,
which shows an array of characters written at one sitting
by a singie user. in which every character was correctly
recognized. Note in particular that the system is inherently
independent of character size and quite tolerant of sloppy
printing.

Practical systems can be designed around this pen for
relatively small character sets, e.g., the ten digits plus a
few special characters such as erase and space. A state
logic system for more than 40 alphanumeric characters
has also been designed. Users experienced with the
numerics-only set can perform reasonably well with this
larger set. However, it is not yet clear whether & practical
system with this many characters could be designed for
a broad range of users.

Format control

Thus far we have considered only the problem of
recognizing isolated characters as they are produced by
the pen. However, as noted earlier, the system has no
measure of absolute pen position in space. In using the
pen to fill out a form. it 1s necessary to specify the box
or ares béing filled out at any moment.

For use with common forms rather than free-format
entry, the pen itself can enter format information. By
letter code, the pen can specify to the system what fields
of data are to be entered and in what order. how large
each field is. and whether the field is numeric or alpha-
numeric. For final verification of data before entry to the
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Figure 10. Random characters recognized without error. Note

that the system is inherently independent of charac-

tor size.

computer system, the entered data can be displayed on a
screen in the format of the form being filled out.

The pen, in other words. can be used in two modes
within an integrated system. In the format entry mode. a
computer processor is programmed by the pen to accept
certain kinds of information in a particular format, as an
intelligent terminal might be programmed. In the data
entry mode, the system accepts the detected characters
as data.

Discussion

The pen described in this paper permits a system
design requiring no special writing surface or special
writing environment.

In contrast to OCR schemes, which suffer from paper-
related problems such as dirt smudges, breaks in the ink
pattern, and folds in the paper, the scheme described here
uses information derived from the pen itself. not from
the writing on the peper. The final image is irrelevant
to the character recognition process, and the paper can
immediately be reduced to archival status. Because of the
simplicity of the recognition ‘logic and the elimination
of special paper-handling requirements, the total system
can be small and portable.

Static and dynamic methods of character recognition
might be usefully complementary for very large character
sets — e.g. Chinese script — that neither technique
alone could handle. Characters having similar dynamic
patterns but distinctly different static forms can be sep-
arated by static methods. For example. the letters P and
D drawn as (D...R.D.L..) sequences are indistinguishabie
by the dynamic method discussed here, although statically
they are easily distinguishable. Similarly, characters with

id
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similar stroke configurstions, i.e.. similar static forms,
in which the strokes are made in different sequences, can
be distinguished by dynamic methods. In other words,
certain dynamic information captured as the material is
written may be useful during subsequent processing even
if not adequate alone for real-time processing.

The system delivers, ASCI1 code words as output and
is compatible. therefore, with computer teletype ports.
The strain-gauge transducers need to be sampied ouly
about 50 times per second. and only changes in direction
need be transmitted to the logic processor. Thus, only a
small amount of preprocessor circuitry need be connected
with each pen, and the direction information can be trans-
mitted with low bandwidth to a central processor. 8
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THE SRI PEN SYSTEM FOR AUTOMATIC SIGNATURE VERIFICATION

Hewitt D. Crane, Daniel E. Wolf and John S. Ostrem
Stanford Research Institute, Menlo Park, California 94025

1. INTRODUCTION

A need has been growing in recent years for a prac-
tical, automatic, personal identification system in
both government and private business. Applications
range from government high security, such as control-
ling access to sensitive areas, to protecticn of access
to computer facilities and data banks. Most of the
methods of personal identification so far developed
have been based on fingerprints, voice, peraonal fden-
tification numbers (PIN), physical features such as
hand geometry, and naturally, the handwritten signature
Signature verification is one of the most promising
techniques, considering psychological acceptance, tech-
nical feasibility, and cost.

By "signature verification” we mean the following:
The person whose identity is to be verified gives a
name or ID number and writes a signature, which will be
referred to as the test signature. The test signature
is then compared with a computer-stored representation,
called the template, of the signature corresponding to
the given name or 1D number. If the test signature is
"close" enough to the template by some appropriate mea-
sure, the person's identity is verified; if not, he is
judged an imposter.

Automatic signature verification requires a repre-
sentation of the written signature in a form suitable
for computer input and subsequent data processing.
There are basically two ways to obtain such a signature
representation. One is to scan the signature optically
after it has been written; this technique is similar in
principle to that used for optical character recogni-
tion. However, optical scanning devices usually sre
bulky, expensive, and generally unsuited for real-time
applications of signature verification. A more attrac-
tive and useful approach is to have either the writing
device or the writing surface generate signals repre-
sentative of the signature while it is being written.

In this paper, we describe an autiuatic, real-time
signature verification system that has been deve'oped
at Stanford Research Institute (SRI). We present
Type 1 (true-signer rejection) and Type II (forger ac-
ceptance) error rates as determined from tests on a
first data base of true signatures and attempted forg-
eries. In the discussion in Section VI we state why we
believe the results presented are conservative and will
be improved in the future.

1I. SRI_THREE-AXIS PEN

The SRI signature verification system uses a strain-
gauge-instrumented ballpoint pen, shown in Figure 1,
that was developed by Crane at SRI.” A small array of
strain-gauges near the ballpoint tip generates three
electrical signals that are representative of the in-
stantaneous three-dimensional drag force at the writing
tip. Specifically, three independent orthogonal com
ponents of the total drag force are measured: downward
force perpendicular to the plane of the writing surfam
(henceforth called pressure, or P), far/near force in
the plane of the writing surface (called Y), and left/
right fotce in the plane of the writing surface (called
X). Each of the three force signale has a high signal-
to-noise ratio. The pen has an ordinary writing tip
and it requires no special writing surface.

II1. SIGNATURE VERIFICATION: PARAMETERS METHOD

The signature verification process is based on s
template matching procedure in which the P, X, and Y
force signals generated during the writing of the test
signature are compared against the P, X, and Y force
signals of the appropriaste template stored in & comput-
er. The comparison can be made in many ways. But in
genersl, a numerical measure of the "closenass” of the
test signature to the template is computed and compared
against a preset value, which we call the decision
threshold. If the numerical messure of "closeness" 1s
less than or equal to the decision threshold, then the
test signature i{s judged to be a true signature. If
the test signature is greater than the decision thresh-
old, it is judged a forgery. A parameters (or featwures)
technique computes as the numerical measure of close-
ness a normalized vector difference between a set of
feature values extracted from the test signature and
the corresponding feature values of the appropriate
template. This technique is compitationally efficient,
requires only a small amount of template storage for
each system user, and can be implemented in a stand-
alone microprocessor unit. Other, more sophisticated
verification techniques are discussed briefly in
Section VI.

In the paraneters technique, a number of parameter
values (teatures) are extracted from the three continu-
ous force-signals generated by the pen during the writ-
ing. These features include the total time of the
signature, the time the pen is on the paper, the time
the pen is off the paper, the average force in each of
the three dimensions, the average energies, the average
angle of writing, and many others. It is likely that
not all of the extracted festures vill be equally ef-
fective for discriminating between true signatures and
attempted forgeries. Also, it is desirable to reduce
the number of features to save computation time and
template storage space. For these reasons, a feature
selection technique is used to select those festures
wost effective (resulting in the least probability of
error) in discriminating between true signatures and
forgeries. Thus far in our analysis, we have examined
more than fifty such features. By application of a
standard F-ratio method of analysis (see reference 2),
typically we reduce the number of features to between
10 and 20. Either a uniform set of features is used
for all subjects or sets that are personalized for each
subject are used.

Given a set of festures, the decision-making slgo~
rithm used for deciding if a particular test sigrature
is a true signature or a forgery is as follows: When
a test signa.ure 1s vwritten, @ value for each ot the
featurea is extracted from the P, X, and Y signals.
The test signature may thus be represented by a feature
vector €, defined as

e
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vhere f is the number of features extracted from the
test signature and s, is the value of the 1th feature.

To determine £{f the teut signature {s a true signature
or s forgery, the feature vector, %, must be cowpared
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with the appropriate template vector, t. A template
vector t must be obtained for each system user. This
requirement necessitates a eimple enrollment procedure
in vhich each user signs several of his true signatures.
The template vector for each user is comnstructed by
averaging the N signatures obtained during the enroll-
ment procedure. Thus, for a particular user

oL 4
[ ]

(2)

1
vhere t, = — It 3)
i P

is the average value of the 1th feature and tyy is the
value of the ith feature for the jth true signiture ob-
tained during an enrollment procedure in which N signa-
tures are taken.

A template covariance matrix, C, can be computed as
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are the unbiased estimators of the elements of the co-
variance matrix, C. The diagonal elements are the vari-
ance of the respective parameters; u“ is the variance

of the 1th feature, and agq ~ Yoy, 1s the correspond-

ing standard deviation.

Under the explicit assumption that the set of f
features is distributed jointly as a multivariate
Gaussian density, it can be shown that an optisum rule
for classifying a test signature as true or as a forg-
ergy is the following.

Cuspute the distance metric

e = A e 6

T

(where + indicates the cranspose operation and C-l is
the inverse of C), and declare that the test signature
is true if d(3) is equal to or less than the decision
tizeshold and that otherwise, it is s forgery.

Unfortunately, the distance metric of Equation 6
has several disadvantages for application in a practi-
cal system Lf f is large. The matrix inversion of C
may be quite time-consuming; considerable space for
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template space is required (since an entire covarisnce
matrix sust be stored for each user); and, most impor-
tant, a large number of trus signstures (typically,
several times f signatures) is required to obtain a
statistically confident estimste of each user covari-
ance matrix, thus leading to a such-extended enrollaent
procedure. For these reasons, ve employ a simpler form
of distance metric, obtained by assuming that the fea-
tures are mutually statistically independent. In this
case, all the off-diagonsl elements of the covariance
astrix are zero (i.e., 94 ® 0 for 1 ¢ §), and Equation
6 reduces to )

—_———

2
f /5, -~ ¢ty
@ - A :(C} :) ™

=1\, %

wl}crc for convenience we have compressed the notatfon
by setting T T .

The distance metric of Equation 7 is eimple, fast
to compute and requires only 5 to 10 true signatures
for the user to be enrolled. However, some loss of
performance is expected if the set of features has sig-
nificant linear correlation.

In fact, it is probable that the signature verifi-
cation features are not jointly distributed as a multi-
variate gaussian density. In this case, neither of the
previously shown distance metrics are known to be opti-
mum, and it is not clear that the distance metric givae
by Equation 7 will yield worse performance than the
more cowplex distance metric given by Equation 6, even
if the features are significantly linearly correlated.
We therefore use the distance metric of Equation 7 be-
cause, even though it probably is not optimum, it is
still a reasonable classification algorithm that has
yielded good performance in prior studies, and has all
the advantages previoualy mentioned for application to
a practical signature verification system.

Using the distance metric of Equation 7 requires
that twvo numbers (an average value and a standard de-
viation) be stored for each feature of a subject's tem-
plate., Basing the analysis on, say, 10 features there-
fore requires storing 20 numbers per subject (approxi-
sately 200 bits). By selecting a set of features for
each subject, it may be possible to use only 5 to 10
features per subject, both reducing storage require-
ments and improving performance.

IV. DATA BASE

A data base of true signatures and attempted forg-
eries has been obtained for the purpose of estimating
the Type I and Type II error rates for this systes.
Sixteen persons selected randomly from a larger group
of volunteers were subjects for the data base. In-
cluded were gecretaries, research assistants and engi-
neers. Each subject was given a set of written instru-
ctions describing the procedure for the sign-in sessions
and vas scheduled to appear for between one and three
sign-in sessions per week over a period of three monthy
for a total of 16 sign-in sessions. At each sessionm,
the subject signed his or her owm signature three times
and acttempted two forgeries of one of the other data
base members. For the forgery attempts, each subject
was given several copies of the signatures of all the
other subjects, a written form that stated that the
signature verification system based the true/forgery
decision on matching the forces and motions involived in
writing & signature, and was encouraged to practice
prior to the formal forgery attempts. The subjects
were not given any fesdback either on whether their
true signatures were verified or vhether their forgery
attempts ware accepted or rejected.
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The P, X, and Y force signals for sach of the true
signatures snd attempted forgeries wers stored on meg-
natic tape. At the conclusion of the specified time
period, sbout 800 true signatures snd 423 sttempted
forgeries had been collected.

v. msuTs

The dsta vere analysed ia seversl weys.

The 800 true signatures were divided randomly iato
two groups of 400. The selection of features for each
subject vas made using an F-ratio analyesis to chooee
those festures that were most effective in discrimi-
nating his or her true signatures agsinst all other
true signatures of the first group of 400. (This tech-
nique of feature selection could be sutomsted ia a
practical signsture verification system.) The sctual
error rate calculations then were perforusd using the
second group of 400 trus signatures together with all
of the 425 forgeries. A templste for sach subject was
constructed by averaging together all his or her true
signatures in the second group of true dats. The cal-
culated errvor rates, using the decision-usking algo-
rithe of Equation 7, are shown in Pigures 2, 3, end 4.

To calculate the Type I error rste, a valus of the
distonce metric msust be computed for asch true signa-
ture. However, if the distance mstric for s particular
true signature is cosputed using a template that in-
cludes that particular signature, the resultant error
rate will be overly optimistic. For this reason, we
subtracted each trus signature from the template vhen
its distance metric was computed.

Toward the end of the data base, we observed that
the error rates seamed to increase. WUe believe this
was because some subjects eventually lost iaterest and
becase csreless, owing to the lack of feedback aad
sotivation in the experimental design. Thie perhage
can be minimized by better experimental design and may
well not be an important factor in an oparatiomal
system. For this resson, we considered it of interest
to perfora again the error rate analysis, but this
time axcluding some of the later dsta-taking sessions.
Thus, error-tate calculations that use only the first
40 deta files, out of a total of 38, are presented in
Pigure S.

finally, we snalysed the first 40 dets files uweing
press.re- and timing-related festures only, to test how
such improvemsent can be expected from a systea that
utilizes s J~axis pen over a single-axis (1.e., pressure-
only) pen. These results sre shown in Figure 6.

All Data Files

Pigures 2(a) and 2(b) sre computer printouts in in-
crements of 0.1 in NG difference (we call the caleu-
lated value of the distance setric, Rquation 7, the
RMS difference) for the true signatures aend fotgeries
of ssch subject. Pigure 2(a) susmarises the true-
signsture dats and Tigure 2(b) dieplays the forgery
dsta. From Figure 2(a), we see that the firet subject
(JAB) entered 28 true sighatures (the sum of columm 1),
ranging in value of RMS difference from 0.6 to 1.7,

The second subject (JLC) entered 23 true signetures
(the sum of column 2), ranging from 0.5 to 1.6. Proa
Figure 2(b), we see that there were )0 attempted forg-
eries of subject JAB, the closest having a value of 2.0,
There 2180 were 30 sttempted forgeries of swbjeet J1IC,
the closest having & valus of 4.4,

Pigure ) £ a distribution plet of the true and
forgery valuss across all subjeets. Ve see, for ox-
ampie, that 14 of the 193 true signatures had MBS

n

difference values ter than 1.6, and 8 of the 423
forgeries had RS difference values lése thaa 1.8.
Alternatively, 379 (or 96.4 percent) of the true signa-
tures had T8 values less than 1.6, and 417 (or 95.1
percent) of the forgeries had NMS values greater than
1.8,

The overlap between the true and forgery dats is

the source of the Type I and Type II errors. The magni-
tude of each type of error s a function of the value
of the threshold for the EMS difference that is chosen,
above vhich a signature is cslled false and below which
it 1s called trus. Magnitude of srror se a functiom of
threshold is shown in Figure & for the dats of Figure 3.
Note that the Type I and Type II errors have an equal
value (1.7 parcent) at sn MMS threshold level of 1.75.

Pizet 40 Dats Files

Pigure 5 shows the error results when only the firet
40 data files are considered. Actuslly, the equal
Type 1/Typs 11 error rate is the ssme (1.7 perceat),
although the Type II error rate falls wmore rapidly with
lower threshold values. Thus, at a threshold RMS level
of 1.8, there is a 0.7 percent Type II error rate (Le.,
forgery acceptance) and 2.3 percent Type I error rate
(i.e., true signature rejection).

Preseure snd Timing Paramsters Only

Pigure 6 shows the error rate plots when the 40data
files of the previous section are rerun with all of the
X-related and Y-related parameters deleted. The equal
error rate is 5 percent.

VI. DISCUSSION
These results must be treated as strictly preliminary.

No one involved with the development of the pea or
signature verification system was also involved in any
of the data-taking sessions. 1ln this way, we hoped to
eliminate any biasing of results that might have been
caused, for example, by subconscious coaching of the
subjects by those who knew the system best. HNHowever,
we would do some things differently in developing an-
other data base. Tirst, we would choose a different
location for the test (a number of subjects complained
after the data base was completed that the computer
toom in which the dats was taken was very cold and
their hends felt stiff). Second, we would shorten the
time over which the data 1s collected or try to iacrease
the motivation of the subjects. We found that the true-
signer templates tended to develop larger standard de-
viations toward the end of the data basa collection
period, probabdly because of the lack of motivation and
resultant loes of interest noted earlier. Becsuse of
the greater template variances, the forgery-scceptance
rate increased. For this reason, we empected signifi-
cantly better results from the first portion of the data
base, although the curves of Figure 3 do not shov as
such improvement as might have been predicted.

fonservative Mspects of the Nesulte

We believe that these results are conservative in
thres major ways. Pirst, the data vas taken with an
sarly, seai~production model of pen, which, unfortunste-
1y, hed s round bedy. Subsequently, we have obtatoed
teproved results with a trisngular-shaped pen of the
type shown in Pigure 1. The X end Y aignals from the
pen are senaitive to the sngle of "rell" abeut the main
axie of the pen. VWith s triaagular body, the subject
grasps the peh much more ceasisteatly every time. ot
eouzee, any paramaters that are sessitive to reil eould
be olininated frem the analysis, but including thea




3

results in & great improvemant in performance (although
consistent roll angle should not have msuch effect on
pressure and timing parsmeters). This result wvas first
noticed in a formal wvay when taking a small data base
of Chinese signatures using native-borm Chinese. Chi-
nese characteristically hold s pen loosely, somewvhat
like an artist's paint brush. Performance with a
round-bodied pen--initially poor--became comparable to
the results shown here when a triangular-shaped pen
vas substituted while the group of subjects remained
the same.

Second, for the purpose of analyzing this dats
base, an individual's template vas made by averaging
true signatures taken over a period of three sonths.

A more likely procedure, at least in some operating
systems, would be to use the first half-dozen or so
signatures for each subject as his or her template,
and update periodically by averaging in signatures
that are verified with an RMS difference value less
than, say, 1.0 or 1.2, In this way, the templste auto-
matically would track any slow changes in the subject's
signature, and the subject's standard deviation values
would tend to be smaller, making his signature wmore
difficult to forge. However, we were not able to re-
analyze the data on that basis for this paper.

Finally, while the F-ratio technique for feature
selection is simple and efficient, it is by no means
optimal, Its primary disadvantage is that it evalu-
ates separataly the discriminacion power of each fes-
ture, ignoring the effects of interfeature correlations.
Also, the F-ratio has no definite relation to the prob-
ability of error, except vhen the distribytion of
values for a festure for the true signatuye and forg-
eries are both Gaussian and distributed with equal
variances. Therefore, we believe that the process of
feature selection can be improved, and that the error
rates probably can be reduced. We have begun to ex-
plore other methods for selecting sets of features,
wvhich will be reporced at a later time.

Other Forms of "Signature”

Our discussion has emphasized actual signatures,
but the system works well also with symbols of any
form, such as the user’'s initials, the digits from0-9,
or one's telephone number. . No formal data, however,
has thus far been taken with other than normsl signa-
tures.

Other Forms of Devices

We have descrided a three-axis pen as an input de-
vice to & signature verification system. A thres-axis
platen svstem also has been developed at SRI for this
purpo.‘.J With this device, the user can write with
an ordinary pen or pencil. Such a system might have
significant advantages in certain applications, al-
though informal data show that it may yield somewhat
poorer performance than a system that utilizes a pen.
In fact, its performance is likely to stand intermedi-
ate between a one-axis (pressure-only) pen and a three-
axis pen. A one-axis pen is completely insensitive to
X and Y forces. While a tinree-axis platen does gener-
ate X and Y signals, the signals are independent of the
wvay the pen is held by the user. For instance, s line
drawn from left to right on the platen will generate a
pure X signal, regardless of pen orientation. With the
three-axis pen, howvever, the coordinate systes is at-
tached to the pen, and therefore the X snd Y eignals
are dependent on pen orientstion. For instance, left-
handed and cight-handed users typically have a 180~
degree shift in X,Y orientation. In other words, a
three-axis pen provides more information with which to
distinguish vriters. In fsact, the choice o_! all right-
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handed subjects ia the data base is yet amother comser-
vative aspect of the results, inessuch as lefthanded
and righthanded users ganerally are easily dietiaguished.

Correlation Mathods

We have developed also a correlation method for
signature verification. In this method, the P, X, and
Y time series force-signals of a test signature are
correlated mathematically against the appropriate P,

X, and Y template signals. 1f the test aignature's
correlation 1s’ greater than soms preassigned threshold,
it 1s judged true, and, if not, it is judged a forgery.
However, straight msthematical correlstion often yields
poor results because of the normal variations in
different true signatures. Even though the test signa-
ture and template P, X, and Y signale msy be highly
correlated by s subjective, visusl comparison, smsll
time shifts within the test signature P, X, and Y
signals can cause important phase shifte with respact
to the template P, X, and Y signals. To compensate
for this effect, ve have developed a number of tech-
niques based. on vhat we call "rubbery" corrslatios.

In these methods, an automstic two-dimensional ficttiag
procedure is used to find an optimal match between the
template and test signatures, allowing time base trans-

* lation and time wvarping (stretch and coatractiom) of

the test signasture P, X, and Y signsls. These pro-~
cedures can be applied independently to different
parts of the signature-~for instance, applied to the
first half of the template snd test signals and then
independently to the second half of the signals; or
the analysis can be done in thirds.

This method requires approximstely ten times as
much storage per subject (several thousand rather than
seversl hundred bits per user) but has the potentisl
to yield significantly better performance than the
parameters msethod. With correlation, evea if a po-
teatial forger has all of the raw signal dats availsble,
he would have to be able to translate the J-axis
visual information into sppropriate muscle rerponses
with great accuracy. Preliainary resulte show that it
is very difficult for even s determined individual to
lsarn to make such a match. These rubbery correlation
mathods will be reported in a future paper.

We believe that for some applications, and depend-
ing on the degree of performance required, there may
be value in using both the quick-and-easy paramsters
wethod and the more sophisticated correlation methods.
For instance, the mathods of analysis have s degree
of independence so that their simultsneous application
should result in improved true/forgery discrimination.

VII. SuewRy

We have described an automatic signature verifica-
tion systes. The syscem uses & ballpoint pen equipped
with an array of strain gauges mounted near the ball-
point tip. The gauges record the instantansous three-
dimensional, or three-axis, drag force generated at
the tip during writing, and these signals are utilized
by the verification system. In other words, the system
analyzes the dynamics of writing vather than the
static image produced by the pen. In fact, the systea
makes attespting to trace someone slse's signsture
one of the vorst possible strategies for forgery.

We have described a method of analysis called
"paramstars method.” It {s computationally stieple
and can be reslized with current microprocessor tech-
nology. Templates for sach user comsist of approni-
mately 200 bits which can be stored i{n & ceatral data
tfile or be encoded on & card carried by the usar.
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In this first reported dsta base, we have found
equal Type 1/Type LI error rates in the range of 1 to
2 percent. We have stated vhy vwe believe these results
are conservative. First, a round-bodied pen was used
in collecting the data; we find much better perform-
ance with a pen that has a triangular-shaped body,
which tends to be held more consistently each time.
Second, the true-signature templates for the error
analysis were formed from true signatures taken over
the entire collection period of several months; wore
practical template-making procedures likely would
utilize only the subject’'s most receant signatures,
which generally lead to much "tighter” templates
(i.e., smaller standard devistion values, vhich are
more difficulc to forge). Third, a straightforward
F-ratio analysis technique was used for selecting
featurea. However, this is not an optimal method.
Currently, we are exploring methods that we hope
will lead to an automatic mesns of selecting optimum
feature sets that likely will be different for each
user.

We have noted also a method of correlation analy-
sis. This method requires about ten times as much
template storage per user, but iz a more effective
method of analysis. Both methods may be applied
simultaneously.
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MAXIMUM LIKELIHOOD ESTIMATION

In the main text of this report, a binomial distribution was used to
describe the probability of R false rejects in T trials. For a single trial
the equivalent relation is (for the ith trial)

z l-z
Prob {z.} =p (-B) 1

where P is the true population error rate to be estimated. In the above rela-
tion zy = 1 if the ith trial is a false rejection, and zy = 0 if the ith trial
is a correct verification. Thus, for example, the probability that the ith
trial is a false rejection is Prob {zi = 1} = P, and the probability that it
is a correct verification is Prob {zi = 0} =1 -P.

The goal is to derive an estimate for P that can be calculated using a
verification data base and that in some sense best agrees with the actually
observed data. The maximum likelihood approach yields one such estimate.®
The first step in the procedure is to form the likelihood function L(P). '
Assuming independent trials, the joint probability distribution for T trials
is

T Zk l-Zk
Prob {zl,zz, ceens zT} = [T P (1-P) .

k=1

The likelihood function is defined as the logarithm of Prob {21’22’ ....,zT}:

L(P) = log[Prob{zl,zz, ooy zT}]

T 2 1-2z
- E log [p ka-p k]

k=1
T T
= (2 zy) log P + Z (1-zy )] log(1-P) .
k=1 k=1

*The theoretical foundation of maximum likelihood estimation is too involved
to treat here, For more details, see, for example, H. Cramer, Mathematical
Methods of Statistics (Princeton University Press, 1951).
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L(P) is maximized in the usual way by setting its derivative with respect to
P equal to 0. This yields

T T
| D a5 T- 2 =0 .

f k=1 k=1

which implies that

- | .
ki Ptsz/T .

v k=1 \

O S

From the definition of 2z, we know that ;
; t
r T '

L 2 % %

k=1

; is simply the total number R of false rejects in T trials, so the maximum
likelihood estimate of the error rate is

g
fl
i
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CONFIDENCE LIMITS i

. In the main text of this report, the probability of R false rejections
1 in T trials was expressed by the binomial distribution

\

prob {R} = ¢ X (1-P)T 7N

where P is the true error rate. An extimate of P that can be calculated from
a data base of verification trials is - :

‘? = maximum likelihood estimate of P = % .
What is our confidence that the estimate P is a good apprecximation to
[ the true error rate P? For simplicity, we assume that T is large* so that

the binomial distribution can be approximated by a Gaussian distribution of
1 variance P(1-P)/T. It can be shown (Snedecor and Cochran, 1967) that the
probability that P lies between

P - 1.96/P(1-P)/T and P + 1.96VP(1-P)/T

is approximately 95 percent. In other words, if we calculate P for a partic-
ular data base, we can be 95 percent certain that the true error P rate lies
between the above limits.. The two limits above are sometimes called the 95
percent confidence limits. The 99 percent confidence limits can be calculated
simply by substituting 2.576 for 1.96.

Example--Suppose that 200 false rejects occur in 1,000 trials:

2 200 |
- . 1
g P 1000 0.2 )

*For small T see Figure E-1.

Snedecor, G. W., and W. G. Cochran, Statistical Methods (Iowa State University
Press, 1967), pp. 210-211.
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We can be 99 percent certain that the true error rate is in the range

0.2 + 2,576 V(.2)(.8)/1000 = 0.2 + 0.033 .

That is, we are 99 percent certain that 16.7 percent £ P < 23.3 percent

——
TRUE TYPE | ERROR RATE

0 = 1 1 | | N |
0t 02 03 04 0S5 06 07 08 09 10
ESTIMATED TYPE | ERRORFP = R'T

FIGURE €-1 CONFIDENCE LIMITS
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